Inverse Problem of Determining the Kernel of Integro-Differential Fractional Diffusion Equation in Bounded Domain

IF 0.5 Q3 MATHEMATICS
D. K. Durdiev, J. J. Jumaev
{"title":"Inverse Problem of Determining the Kernel of Integro-Differential Fractional Diffusion Equation in Bounded Domain","authors":"D. K. Durdiev, J. J. Jumaev","doi":"10.3103/s1066369x23100043","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, an inverse problem of determining a kernel in a one-dimensional integro-differential time-fractional diffusion equation with initial-boundary and overdetermination conditions is investigated. An auxiliary problem equivalent to the problem is introduced first. By Fourier method this auxilary problem is reduced to equivalent integral equations. Then, using estimates of the Mittag–Leffler function and successive aproximation method, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown kernel which will be used in study of inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"56 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23100043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an inverse problem of determining a kernel in a one-dimensional integro-differential time-fractional diffusion equation with initial-boundary and overdetermination conditions is investigated. An auxiliary problem equivalent to the problem is introduced first. By Fourier method this auxilary problem is reduced to equivalent integral equations. Then, using estimates of the Mittag–Leffler function and successive aproximation method, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown kernel which will be used in study of inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven.

确定有界域中积分微分扩散方程核的逆问题
摘要 本文研究了具有初始-边界和超定条件的一维整数-微分时间-分数扩散方程中确定内核的逆问题。首先引入了一个与问题等价的辅助问题。通过傅立叶方法,这个辅助问题被简化为等价积分方程。然后,利用 Mittag-Leffler 函数的估计值和连续逼近法,用未知核的规范得到直接问题解的估计值,该估计值将用于研究逆问题。逆问题被简化为等价积分方程。为了求解这个方程,应用了收缩映射原理。证明了局部存在性和全局唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信