Shuo Su, Tai Wang, Xiaolong Ma, Zhaojiu Zhang, Chuntao Liu
{"title":"Experimental Investigation on Dynamic Characteristics of Highly Viscous Droplets and Liquid Bridges Under the Influence of Electric Fields","authors":"Shuo Su, Tai Wang, Xiaolong Ma, Zhaojiu Zhang, Chuntao Liu","doi":"10.1007/s12217-023-10091-8","DOIUrl":null,"url":null,"abstract":"<div><p>Formation of highly viscous droplets and liquid bridges under the influence of electric fields is widely used in material preparation, food processing, inkjet printing and 3D (three-dimensional) printing. To investigate the formation of droplets and liquid bridges, a visual experimental platform is designed and constructed. A non-uniform electric field is constructed using a metal capillary and a copper pole plate. By varying the voltage, capillary diameter and liquid volume flow rate, the formation of silicone oil droplets and liquid bridges is investigated. The influence of electric forces to the coiling effect of viscous fluids is researched, which has not been thoroughly investigated in previous research. The results verify that at low volume flow rates and small pipe diameters, the silicone oil formation pattern is in the droplet state. As the voltage increases, the droplet formation period decreases. When the voltage is gradually increased at higher volume flow rates, the silicone oil changes from the initial liquid bridge to the droplet. This experimental phenomenon demonstrates that the electric field can alter the instability of the jet. In the case of small volume flow rates and large pipe diameter, the droplet formation state changes from droplet mode to multi-strand jet mode after the voltage is increased to a certain level. At large pipe diameters and large volume flows rates, the liquid bridge mode with a rope coiling effect occurs due to the highly viscous nature of the silicone oil, but the rope coiling effect disappears after a certain voltage is applied.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10091-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Formation of highly viscous droplets and liquid bridges under the influence of electric fields is widely used in material preparation, food processing, inkjet printing and 3D (three-dimensional) printing. To investigate the formation of droplets and liquid bridges, a visual experimental platform is designed and constructed. A non-uniform electric field is constructed using a metal capillary and a copper pole plate. By varying the voltage, capillary diameter and liquid volume flow rate, the formation of silicone oil droplets and liquid bridges is investigated. The influence of electric forces to the coiling effect of viscous fluids is researched, which has not been thoroughly investigated in previous research. The results verify that at low volume flow rates and small pipe diameters, the silicone oil formation pattern is in the droplet state. As the voltage increases, the droplet formation period decreases. When the voltage is gradually increased at higher volume flow rates, the silicone oil changes from the initial liquid bridge to the droplet. This experimental phenomenon demonstrates that the electric field can alter the instability of the jet. In the case of small volume flow rates and large pipe diameter, the droplet formation state changes from droplet mode to multi-strand jet mode after the voltage is increased to a certain level. At large pipe diameters and large volume flows rates, the liquid bridge mode with a rope coiling effect occurs due to the highly viscous nature of the silicone oil, but the rope coiling effect disappears after a certain voltage is applied.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.