{"title":"Promoted electro-oxidation kinetics in chromium-doped α‑Ni(OH)2 nanosheets for efficient selective conversion of methanol to formate","authors":"Yu Fan, Xu Yang, Enhui Wei, Yuan Dong, Hongtao Gao, Xiliang Luo, Wenlong Yang","doi":"10.1016/j.apcatb.2024.123716","DOIUrl":null,"url":null,"abstract":"<div><p><span>Owing to the elusive pathways of methanol oxidation reaction (MOR) and the lack of applicable catalysts, the selective electro-oxidation of methanol to formate remains a challenging topic. Herein, we present a chromium-doping strategy to promote the MOR performance of α-Ni(OH)</span><sub>2</sub><span> nanosheets with a high selectivity towards formate generation. Taking chromium-doped α-Ni(OH)</span><sub>2</sub> nanosheets as an example, we further highlight the role of doping atoms in MOR by combining theoretical calculations with experimental measurements. It reveals that chromium doping can not only enhance the conductivity of α-Ni(OH)<sub>2</sub> nanosheets, but also endow the catalyst with optimized kinetics for electroactive NiOOH formation and methanol absorption, thus resulting in a remarkable MOR current density of 141 mA cm<sup>−2</sup> at 0.50 V vs. Ag/AgCl with a faradaic efficiency of 92.1% for formate. Furthermore, in situ infrared spectroscopy demonstrates that methanol is selectively oxidized to formate without further oxidation to CO<sub>2</sub> over chromium-doped α‑Ni(OH)<sub>2</sub> nanosheets in alkaline media.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"345 ","pages":"Article 123716"},"PeriodicalIF":20.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000274","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the elusive pathways of methanol oxidation reaction (MOR) and the lack of applicable catalysts, the selective electro-oxidation of methanol to formate remains a challenging topic. Herein, we present a chromium-doping strategy to promote the MOR performance of α-Ni(OH)2 nanosheets with a high selectivity towards formate generation. Taking chromium-doped α-Ni(OH)2 nanosheets as an example, we further highlight the role of doping atoms in MOR by combining theoretical calculations with experimental measurements. It reveals that chromium doping can not only enhance the conductivity of α-Ni(OH)2 nanosheets, but also endow the catalyst with optimized kinetics for electroactive NiOOH formation and methanol absorption, thus resulting in a remarkable MOR current density of 141 mA cm−2 at 0.50 V vs. Ag/AgCl with a faradaic efficiency of 92.1% for formate. Furthermore, in situ infrared spectroscopy demonstrates that methanol is selectively oxidized to formate without further oxidation to CO2 over chromium-doped α‑Ni(OH)2 nanosheets in alkaline media.
由于甲醇氧化反应(MOR)的途径难以捉摸,而且缺乏适用的催化剂,因此将甲醇选择性电氧化为甲酸盐仍然是一个具有挑战性的课题。在此,我们提出了一种铬掺杂策略,以促进α-Ni(OH)2纳米片的甲醇氧化反应性能,并使其具有生成甲酸盐的高选择性。以掺铬的α-Ni(OH)2 纳米片为例,我们结合理论计算和实验测量进一步强调了掺杂原子在 MOR 中的作用。实验结果表明,铬掺杂不仅能增强α-Ni(OH)2 纳米片的电导率,还能优化催化剂的电活性 NiOOH 形成和甲醇吸收动力学,从而使其在 0.50 V 对 Ag/AgCl 条件下的 MOR 电流密度达到 141 mA cm-2,甲酸根效率达到 92.1%。此外,原位红外光谱显示,在碱性介质中,掺铬的α-Ni(OH)2 纳米片可选择性地将甲醇氧化成甲酸根,而不会进一步氧化成二氧化碳。
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.