Honghong Wang , Pengfei Liu , Jiaxin Peng , Haoming Yu , Li Wang
{"title":"Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) modified metal-organic frameworks boosting carbon dots electrochemiluminescence emission for sensitive miRNA detection","authors":"Honghong Wang , Pengfei Liu , Jiaxin Peng , Haoming Yu , Li Wang","doi":"10.1016/j.bios.2024.116015","DOIUrl":null,"url":null,"abstract":"<div><p>Highly efficient luminescent<span><span><span> materials play an important role in electrochemiluminescence (ECL) biosensing systems. Herein, the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) modified </span>carbon dots<span> (CDs)/zeolitic imidazolate framework-8 (ZIF-8) compositing metal-organic frameworks (MOFs) materials with excellent luminescence performance were prepared as the ECL emitters for biosensing application. In this novel ternary composites, CDs were used as emitters, ZIF-8 was used as a carrier, and the luminescent performance was finally improved by introducing PEDOT:PSS to improve the conductivity of the nanomaterials<span>. As a result, CDs/PEDOT:PSS/ZIF-8 exhibited an approximately 8 times ECL intensity compared to CDs alone. By further modifying with AuNPs, the enhancement factor reached ≈10 in reference to the individual CDs. After combining with a DNAzyme-based two-cycle target amplification principle, an ECL biosensor was constructed to achieve high-sensitivity detection of miRNA-21 with a detection limit of 50 aM. The biosensor also demonstrated desirable selectivity, excellent stability, and quantitative ability for human serum target detection. Overall, these findings not only provide a promising pathway for high luminous efficiency ECL emitters synthesis, but also provide a platform for ultrasensitive </span></span></span>miRNA sensing.</span></p></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"249 ","pages":"Article 116015"},"PeriodicalIF":10.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324000186","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Highly efficient luminescent materials play an important role in electrochemiluminescence (ECL) biosensing systems. Herein, the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) modified carbon dots (CDs)/zeolitic imidazolate framework-8 (ZIF-8) compositing metal-organic frameworks (MOFs) materials with excellent luminescence performance were prepared as the ECL emitters for biosensing application. In this novel ternary composites, CDs were used as emitters, ZIF-8 was used as a carrier, and the luminescent performance was finally improved by introducing PEDOT:PSS to improve the conductivity of the nanomaterials. As a result, CDs/PEDOT:PSS/ZIF-8 exhibited an approximately 8 times ECL intensity compared to CDs alone. By further modifying with AuNPs, the enhancement factor reached ≈10 in reference to the individual CDs. After combining with a DNAzyme-based two-cycle target amplification principle, an ECL biosensor was constructed to achieve high-sensitivity detection of miRNA-21 with a detection limit of 50 aM. The biosensor also demonstrated desirable selectivity, excellent stability, and quantitative ability for human serum target detection. Overall, these findings not only provide a promising pathway for high luminous efficiency ECL emitters synthesis, but also provide a platform for ultrasensitive miRNA sensing.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.