Sofia Tisocco, Sören Weinrich, Gary Lyons, Michael Wills, Xinmin Zhan, Paul Crosson
{"title":"Application of a simplified ADM1 for full-scale anaerobic co-digestion of cattle slurry and grass silage: assessment of input variability","authors":"Sofia Tisocco, Sören Weinrich, Gary Lyons, Michael Wills, Xinmin Zhan, Paul Crosson","doi":"10.1007/s11783-024-1810-9","DOIUrl":null,"url":null,"abstract":"<p>Mathematical modeling of anaerobic digestion is a powerful tool to predict gas yields and optimize the process. The Anaerobic Digestion Model No. 1 (ADM1) is a widely implemented model for this purpose. However, modeling full-scale biogas plants is challenging due to the extensive substrate and parameter characterization required. This study describes the modification of the ADM1 through a simplification of individual process phases, characteristic components and required parameters. Consequently, the ability of the simplified model to simulate the co-digestion of grass silage and cattle slurry was evaluated using data from a full-scale biogas plant. The impacts of substrate composition (crude carbohydrate, protein and lipid concentration) and variability of carbohydrate degradability on simulation results were assessed to identify the most influential parameters. Results indicated that the simplified version was able to depict biogas and biomethane production with average model efficiencies, according to the Nash-Sutcliffe efficiency (NSE) coefficient, of 0.70 and 0.67, respectively, and was comparable to the original ADM1 (average model efficiencies of 0.71 and 0.63, respectively). The variability of crude carbohydrate, protein and lipid concentration did not significantly impact biogas and biomethane output for the data sets explored. In contrast, carbohydrate degradability seemed to explain much more of the variability in the biogas and methane production. Thus, the application of simplified models provides a reliable basis for the process simulation and optimization of full-scale agricultural biogas plants.</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1810-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mathematical modeling of anaerobic digestion is a powerful tool to predict gas yields and optimize the process. The Anaerobic Digestion Model No. 1 (ADM1) is a widely implemented model for this purpose. However, modeling full-scale biogas plants is challenging due to the extensive substrate and parameter characterization required. This study describes the modification of the ADM1 through a simplification of individual process phases, characteristic components and required parameters. Consequently, the ability of the simplified model to simulate the co-digestion of grass silage and cattle slurry was evaluated using data from a full-scale biogas plant. The impacts of substrate composition (crude carbohydrate, protein and lipid concentration) and variability of carbohydrate degradability on simulation results were assessed to identify the most influential parameters. Results indicated that the simplified version was able to depict biogas and biomethane production with average model efficiencies, according to the Nash-Sutcliffe efficiency (NSE) coefficient, of 0.70 and 0.67, respectively, and was comparable to the original ADM1 (average model efficiencies of 0.71 and 0.63, respectively). The variability of crude carbohydrate, protein and lipid concentration did not significantly impact biogas and biomethane output for the data sets explored. In contrast, carbohydrate degradability seemed to explain much more of the variability in the biogas and methane production. Thus, the application of simplified models provides a reliable basis for the process simulation and optimization of full-scale agricultural biogas plants.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.