Paramita Koley, Ranjithkumar Jakku, Tayebeh Hosseinnejad, Selvakannan Periasamy and Suresh K. Bhargava
{"title":"Immobilizing nanozymes on 3D-printed metal substrates for enhanced peroxidase-like activity and trace-level glucose detection†","authors":"Paramita Koley, Ranjithkumar Jakku, Tayebeh Hosseinnejad, Selvakannan Periasamy and Suresh K. Bhargava","doi":"10.1039/D3NR05427F","DOIUrl":null,"url":null,"abstract":"<p >The prevalence of 3D-printed portable biomedical sensing devices, which are fashioned mainly from plastic and polymer materials, introduces a pressing concern due to their limited reusability and consequential generation of substantial disposable waste. Considering this, herein, we pioneered a ground-breaking advancement, <em>i.e.</em>, a 3D-printed metal substrate-based enzyme. Our inventive methodology involved the synthesis of a thermally degraded Fe-based metal–organic framework, DEG 500, followed by its deposition on a 3D-printed metal substrate composed of Ti–Al–V alloy. This novel composite exhibited remarkable peroxidase-like activity in a range of different temperatures and pH, coupled with the ability to detect glucose in real-world samples such as blood and fruit juices. The exceptional enzymatic behaviour was attributed to the diverse iron (Fe) oxidation states and the presence of oxygen vacancies, as evidenced through advanced characterization techniques. Fundamentally, we rigorously explored the mechanistic pathway through controlled studies and theoretical calculations, culminating in a transformative stride toward more sustainable and effective biomedical sensing practices.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 11","pages":" 5561-5573"},"PeriodicalIF":5.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d3nr05427f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of 3D-printed portable biomedical sensing devices, which are fashioned mainly from plastic and polymer materials, introduces a pressing concern due to their limited reusability and consequential generation of substantial disposable waste. Considering this, herein, we pioneered a ground-breaking advancement, i.e., a 3D-printed metal substrate-based enzyme. Our inventive methodology involved the synthesis of a thermally degraded Fe-based metal–organic framework, DEG 500, followed by its deposition on a 3D-printed metal substrate composed of Ti–Al–V alloy. This novel composite exhibited remarkable peroxidase-like activity in a range of different temperatures and pH, coupled with the ability to detect glucose in real-world samples such as blood and fruit juices. The exceptional enzymatic behaviour was attributed to the diverse iron (Fe) oxidation states and the presence of oxygen vacancies, as evidenced through advanced characterization techniques. Fundamentally, we rigorously explored the mechanistic pathway through controlled studies and theoretical calculations, culminating in a transformative stride toward more sustainable and effective biomedical sensing practices.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.