Angus L. Nixon, Nicholas Fernie, Stijn Glorie, Martin Hand, Betina Bendell
{"title":"Thermal evolution and sediment provenance of the Cooper–Eromanga Basin: Insights from detrital apatite","authors":"Angus L. Nixon, Nicholas Fernie, Stijn Glorie, Martin Hand, Betina Bendell","doi":"10.1111/bre.12843","DOIUrl":null,"url":null,"abstract":"<p>The prolific hydrocarbon and geothermal potential of the Cooper–Eromanga Basin has long been recognised and studied, however, the thermal history which underpins these resources has largely remained elusive. This study presents new apatite fission track and U–Pb data for eight wells within the southwestern domain of the Cooper–Eromanga Basin, from which thermal history and detrital provenance reconstructions were conducted. Samples taken from sedimentary rocks of the upper Eromanga Basin (Winton, Mackunda and Cadna-owie Formations) yield dominant Early-Cretaceous and minor Late-Permian–Triassic apatite U–Pb ages that are (within uncertainty) equivalent to corresponding fission track age populations. Furthermore, the obtained Cretaceous apatite ages correlate well with the stratigraphic ages for each analysed formation, suggesting (1) little time lag between apatite exposure in the source region and sediment deposition, and (2) that no significant (>ca. 100°C) reheating affected these formations in this region following deposition. Cretaceous apatites were likely distally sourced from an eastern Australian volcanic arc, (e.g. the Whitsunday Igneous Association), and mixed with Permian–Triassic sediment sources from the New England and/or Mossman Orogens. Deeper samples (>2000 m) from within the southwestern Cooper Basin yielded partially reset fission track ages, indicative of heating to temperatures exceeding ca. 100–80°C after deposition. The associated thermal history models are broadly consistent with previous studies and suggest that maximum temperatures were reached at ca. 100–70 Ma as a result of hydrothermal circulation correlating with high rates of sedimentation. Subsequent Late-Cretaceous–Palaeogene cooling is interpreted to reflect post magmatic thermal subsidence and cessation of hydrothermal activity, as well as potential modified rock thermal conductivity as a response to fluid flow. Five of the seven modelled wells record a Neogene heating event, the geological significance of which remains tentative but may suggest possible reactivation of the Cooper Hot Spot and associated hydrothermal circulation.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12843","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12843","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The prolific hydrocarbon and geothermal potential of the Cooper–Eromanga Basin has long been recognised and studied, however, the thermal history which underpins these resources has largely remained elusive. This study presents new apatite fission track and U–Pb data for eight wells within the southwestern domain of the Cooper–Eromanga Basin, from which thermal history and detrital provenance reconstructions were conducted. Samples taken from sedimentary rocks of the upper Eromanga Basin (Winton, Mackunda and Cadna-owie Formations) yield dominant Early-Cretaceous and minor Late-Permian–Triassic apatite U–Pb ages that are (within uncertainty) equivalent to corresponding fission track age populations. Furthermore, the obtained Cretaceous apatite ages correlate well with the stratigraphic ages for each analysed formation, suggesting (1) little time lag between apatite exposure in the source region and sediment deposition, and (2) that no significant (>ca. 100°C) reheating affected these formations in this region following deposition. Cretaceous apatites were likely distally sourced from an eastern Australian volcanic arc, (e.g. the Whitsunday Igneous Association), and mixed with Permian–Triassic sediment sources from the New England and/or Mossman Orogens. Deeper samples (>2000 m) from within the southwestern Cooper Basin yielded partially reset fission track ages, indicative of heating to temperatures exceeding ca. 100–80°C after deposition. The associated thermal history models are broadly consistent with previous studies and suggest that maximum temperatures were reached at ca. 100–70 Ma as a result of hydrothermal circulation correlating with high rates of sedimentation. Subsequent Late-Cretaceous–Palaeogene cooling is interpreted to reflect post magmatic thermal subsidence and cessation of hydrothermal activity, as well as potential modified rock thermal conductivity as a response to fluid flow. Five of the seven modelled wells record a Neogene heating event, the geological significance of which remains tentative but may suggest possible reactivation of the Cooper Hot Spot and associated hydrothermal circulation.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.