Analysis of the Nonequilibrium Phase Change Behaviors of the Cryoprotectant Solutions for Cryopreservation of Human Red Blood Cells with Low-Concentration Glycerol.
{"title":"Analysis of the Nonequilibrium Phase Change Behaviors of the Cryoprotectant Solutions for Cryopreservation of Human Red Blood Cells with Low-Concentration Glycerol.","authors":"Xingjie Wu, Lingxiao Shen, Gang Zhao","doi":"10.1089/bio.2023.0041","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, we proposed a low-glycerol cryoprotectant formulation (consisting of 0.4 M trehalose and 5% glycerol) for cryopreservation of human red blood cells (RBCs), which greatly reduced the concentration of glycerol, minimized intracellular ice damage, and achieved high recovery. Although this study was successful in cellular experiments, the nonequilibrium phase transition behaviors of the cryoprotective agent solution have not been systematically analyzed. Therefore, it is essential to provide reliable thermodynamic data to substantiate the viability of this cryopreservation technique. In this study, the phase change behaviors and thermal properties of typical trehalose and/or glycerol solutions quenched in liquid nitrogen were investigated using differential scanning calorimetry and cryomicroscopy. It was found that the glass transition temperatures of both the trehalose aqueous solution (<1.0 M) and glycerol aqueous solution (<40% w/v) did not vary apparently with the concentration at low concentrations, while they increased significantly with increasing concentration at high concentrations. Moreover, it was revealed that the inhibitory effect of trehalose on ice growth was affected by glycerol. We further found that the addition of low concentrations of glycerol facilitates the partial glass transition of trehalose solutions at low concentrations. The results of this work provide reliable thermodynamic data to support the cryopreservation of human RBCs with unusually low concentrations of glycerol.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, we proposed a low-glycerol cryoprotectant formulation (consisting of 0.4 M trehalose and 5% glycerol) for cryopreservation of human red blood cells (RBCs), which greatly reduced the concentration of glycerol, minimized intracellular ice damage, and achieved high recovery. Although this study was successful in cellular experiments, the nonequilibrium phase transition behaviors of the cryoprotective agent solution have not been systematically analyzed. Therefore, it is essential to provide reliable thermodynamic data to substantiate the viability of this cryopreservation technique. In this study, the phase change behaviors and thermal properties of typical trehalose and/or glycerol solutions quenched in liquid nitrogen were investigated using differential scanning calorimetry and cryomicroscopy. It was found that the glass transition temperatures of both the trehalose aqueous solution (<1.0 M) and glycerol aqueous solution (<40% w/v) did not vary apparently with the concentration at low concentrations, while they increased significantly with increasing concentration at high concentrations. Moreover, it was revealed that the inhibitory effect of trehalose on ice growth was affected by glycerol. We further found that the addition of low concentrations of glycerol facilitates the partial glass transition of trehalose solutions at low concentrations. The results of this work provide reliable thermodynamic data to support the cryopreservation of human RBCs with unusually low concentrations of glycerol.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.