Hui Tang, Gang Ma, Lishen Qiu, Lesong Zheng, Rui Bao, Jing Liu, Lirong Wang
{"title":"Blood Pressure Estimation Based on PPG and ECG Signals Using Knowledge Distillation.","authors":"Hui Tang, Gang Ma, Lishen Qiu, Lesong Zheng, Rui Bao, Jing Liu, Lirong Wang","doi":"10.1007/s13239-023-00695-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Easy access bio-signals are useful for alleviating the shortcomings and difficulties associated with cuff-based and invasive blood pressure (BP) measurement techniques. This study proposes a deep learning model, trained using knowledge distillation, based on photoplethysmographic (PPG) and electrocardiogram (ECG) signals to estimate systolic and diastolic blood pressures.</p><p><strong>Methods: </strong>The estimation model comprises convolutional layers followed by one bidirectional recurrent layer and attention layers. The training approach involves knowledge distillation, where a smaller model (student model) is trained by leveraging information from a larger model (teacher model).</p><p><strong>Results: </strong>The proposed multistage model was evaluated on 1205 subjects from Medical Information Mart for Intensive Care (MIMIC) III database using the Association for the Advancement of Medical Instrumentation (AAMI) and the standards of the British Hypertension Society (BHS). The results revealed that our model performance achieved grade A in estimating both systolic blood pressure (SBP) and diastolic blood pressure (DBP) and met the requirements of the AAMI standard. After training with knowledge distillation (KD), the model achieved a mean absolute error and standard deviation of 2.94 ± 5.61 mmHg for SBP and 2.02 ± 3.60 mmHg for DBP.</p><p><strong>Conclusion: </strong>Our results demonstrate the benefits of the knowledge distillation training method in reducing the number of parameters and improving the predictive accuracy of the blood pressure regression model.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"39-51"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-023-00695-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Easy access bio-signals are useful for alleviating the shortcomings and difficulties associated with cuff-based and invasive blood pressure (BP) measurement techniques. This study proposes a deep learning model, trained using knowledge distillation, based on photoplethysmographic (PPG) and electrocardiogram (ECG) signals to estimate systolic and diastolic blood pressures.
Methods: The estimation model comprises convolutional layers followed by one bidirectional recurrent layer and attention layers. The training approach involves knowledge distillation, where a smaller model (student model) is trained by leveraging information from a larger model (teacher model).
Results: The proposed multistage model was evaluated on 1205 subjects from Medical Information Mart for Intensive Care (MIMIC) III database using the Association for the Advancement of Medical Instrumentation (AAMI) and the standards of the British Hypertension Society (BHS). The results revealed that our model performance achieved grade A in estimating both systolic blood pressure (SBP) and diastolic blood pressure (DBP) and met the requirements of the AAMI standard. After training with knowledge distillation (KD), the model achieved a mean absolute error and standard deviation of 2.94 ± 5.61 mmHg for SBP and 2.02 ± 3.60 mmHg for DBP.
Conclusion: Our results demonstrate the benefits of the knowledge distillation training method in reducing the number of parameters and improving the predictive accuracy of the blood pressure regression model.
期刊介绍:
Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.