Design and Synthesis of 6-amido-3-carboxypyridazine Derivatives as Potent T3SS Inhibitors of Salmonella enterica Serovar Typhimurium.

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Zhenyu Li, Zhiyong Liu, Yuemao Shen, Chengwu Shen
{"title":"Design and Synthesis of 6-amido-3-carboxypyridazine Derivatives as Potent T3SS Inhibitors of <i>Salmonella enterica</i> Serovar Typhimurium.","authors":"Zhenyu Li, Zhiyong Liu, Yuemao Shen, Chengwu Shen","doi":"10.2174/0115734064252833231129062005","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Salmonella enterica (S. enterica)</i> serovar Typhimurium, an anaerobic enteric pathogene, could cause human and animal diseases ranging from mild gastroenteritis to whole body serious infections.</p><p><strong>Objective: </strong>The goal of this paper was to synthesize new 6-amido-3-carboxypyridazine derivatives with different lengths of side chains with the aim of getting potent antibacterial agents.</p><p><strong>Methods: </strong>Synthesized compounds were analyzed by analytical techniques, such as <sup>1</sup>H NMR, <sup>13</sup>C NMR spectra, and mass spectrometry. We designed a series of novel 6-amido-3-carboxypyridazines using FA as the lead compound with the scaffold hopping strategy and their inhibitory activity against the effectors of type III secretion system (T3SS) using SDS-PAGE and western blot analysis for two rounds. Also, the preliminary mechanism of action of this series of compounds on T3SS was performed using real-time qPCR.</p><p><strong>Results: </strong>Nine 6-amido-3-carboxypyridazines was synthesized. The inhibitory activities evaluated showed that compound 2i was the most potent T3SS inhibitor, which demonstrated potent inhibitory activities on the secretion of the T3SS SPI-1 effectors in a dose-dependent manner. The transcription of SPI-1 may be affected by compound 2i through the <i>SicA/InvF</i> regulatory pathway.</p><p><strong>Conclusion: </strong>The novel synthetic 6-amido-3-carboxypyridazines could act as potent leads for the development of novel antibacterial agents.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064252833231129062005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Salmonella enterica (S. enterica) serovar Typhimurium, an anaerobic enteric pathogene, could cause human and animal diseases ranging from mild gastroenteritis to whole body serious infections.

Objective: The goal of this paper was to synthesize new 6-amido-3-carboxypyridazine derivatives with different lengths of side chains with the aim of getting potent antibacterial agents.

Methods: Synthesized compounds were analyzed by analytical techniques, such as 1H NMR, 13C NMR spectra, and mass spectrometry. We designed a series of novel 6-amido-3-carboxypyridazines using FA as the lead compound with the scaffold hopping strategy and their inhibitory activity against the effectors of type III secretion system (T3SS) using SDS-PAGE and western blot analysis for two rounds. Also, the preliminary mechanism of action of this series of compounds on T3SS was performed using real-time qPCR.

Results: Nine 6-amido-3-carboxypyridazines was synthesized. The inhibitory activities evaluated showed that compound 2i was the most potent T3SS inhibitor, which demonstrated potent inhibitory activities on the secretion of the T3SS SPI-1 effectors in a dose-dependent manner. The transcription of SPI-1 may be affected by compound 2i through the SicA/InvF regulatory pathway.

Conclusion: The novel synthetic 6-amido-3-carboxypyridazines could act as potent leads for the development of novel antibacterial agents.

6-amido-3-carboxypyridazine Derivatives 作为伤寒沙门氏菌 T3SS 强效抑制剂的设计与合成。
背景:肠炎沙门氏菌(S. enterica)是一种厌氧性肠道致病菌,可引起从轻微肠胃炎到全身严重感染的人类和动物疾病:本文旨在合成具有不同长度侧链的新型 6-氨基-3-羧基哒嗪衍生物,以期获得强效抗菌剂:方法:利用 1H NMR、13C NMR 光谱和质谱等分析技术对合成的化合物进行分析。我们以 FA 为先导化合物,采用支架跳转策略设计了一系列新型 6-氨基-3-羧基哒嗪类化合物,并利用 SDS-PAGE 和 Western 印迹分析法对它们对 III 型分泌系统(T3SS)效应因子的抑制活性进行了两轮研究。此外,还利用实时 qPCR 研究了该系列化合物对 T3SS 的初步作用机制:结果:合成了 9 个 6-氨基-3-羧基哒嗪类化合物。抑制活性的评估结果表明,化合物 2i 是最有效的 T3SS 抑制剂,它以剂量依赖的方式对 T3SS SPI-1 效应子的分泌具有强效的抑制活性。有趣的是,化合物 2i 可能通过 SicA/ InvF 调节途径影响 SPI-1 的转录:结论:新合成的 6-氨基-3-羧基哒嗪类化合物可作为开发新型抗菌剂的有效线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信