{"title":"How drug onset rate and duration of action affect drug forgiveness.","authors":"Elias D Clark, Sean D Lawley","doi":"10.1007/s10928-023-09897-1","DOIUrl":null,"url":null,"abstract":"<p><p>Medication nonadherence is one of the largest problems in healthcare today, particularly for patients undergoing long-term pharmacotherapy. To combat nonadherence, it is often recommended to prescribe so-called \"forgiving\" drugs, which maintain their effect despite lapses in patient adherence. Nevertheless, drug forgiveness is difficult to quantify and compare between different drugs. In this paper, we construct and analyze a stochastic pharmacokinetic/pharmacodynamic (PK/PD) model to quantify and understand drug forgiveness. The model parameterizes a medication merely by an effective rate of onset of effect when the medication is taken (on-rate) and an effective rate of loss of effect when a dose is missed (off-rate). Patient dosing is modeled by a stochastic process that allows for correlations in missed doses. We analyze this \"on/off\" model and derive explicit formulas that show how treatment efficacy depends on drug parameters and patient adherence. As a case study, we compare the effects of nonadherence on the efficacy of various antihypertensive medications. Our analysis shows how different drugs can have identical efficacies under perfect adherence, but vastly different efficacies for adherence patterns typical of actual patients. We further demonstrate that complex PK/PD models can indeed be parameterized in terms of effective on-rates and off-rates. Finally, we have created an online app to allow pharmacometricians to explore the implications of our model and analysis.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"213-226"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-023-09897-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Medication nonadherence is one of the largest problems in healthcare today, particularly for patients undergoing long-term pharmacotherapy. To combat nonadherence, it is often recommended to prescribe so-called "forgiving" drugs, which maintain their effect despite lapses in patient adherence. Nevertheless, drug forgiveness is difficult to quantify and compare between different drugs. In this paper, we construct and analyze a stochastic pharmacokinetic/pharmacodynamic (PK/PD) model to quantify and understand drug forgiveness. The model parameterizes a medication merely by an effective rate of onset of effect when the medication is taken (on-rate) and an effective rate of loss of effect when a dose is missed (off-rate). Patient dosing is modeled by a stochastic process that allows for correlations in missed doses. We analyze this "on/off" model and derive explicit formulas that show how treatment efficacy depends on drug parameters and patient adherence. As a case study, we compare the effects of nonadherence on the efficacy of various antihypertensive medications. Our analysis shows how different drugs can have identical efficacies under perfect adherence, but vastly different efficacies for adherence patterns typical of actual patients. We further demonstrate that complex PK/PD models can indeed be parameterized in terms of effective on-rates and off-rates. Finally, we have created an online app to allow pharmacometricians to explore the implications of our model and analysis.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.