Validation of an automated sample preparation module directly connected to LC-MS/MS (CLAM-LC-MS/MS system) and comparison with conventional immunoassays for quantitation of tacrolimus and cyclosporin A in a clinical setting.
{"title":"Validation of an automated sample preparation module directly connected to LC-MS/MS (CLAM-LC-MS/MS system) and comparison with conventional immunoassays for quantitation of tacrolimus and cyclosporin A in a clinical setting.","authors":"Tsutomu Shimada, Daisuke Kawakami, Arimi Fujita, Rintaro Yamamoto, Satoshi Hara, Kiyoaki Ito, Ichiro Mizushima, Shinji Kitajima, Yasunori Iwata, Norihiko Sakai, Mitsuhiro Kawano, Takashi Wada, Yoshimichi Sai","doi":"10.1186/s40780-023-00318-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Therapeutic drug monitoring (TDM) systems generally use either liquid chromatography/tandem mass spectrometry (LC-MS/MS) or immunoassay, though both methodologies have disadvantages. In this study, we aimed to evaluate whether a CLAM-LC-MS/MS system, which consists of a sample preparation module directly connected to LC-MS/MS, could be used for clinical TDM work for immunosuppressive drugs in whole blood, which requires a hemolytic process. For this purpose, we prospectively validated this system for clinical measurement of tacrolimus and cyclosporin A in patients' whole blood. The results were also compared with those of commercial immunoassays.</p><p><strong>Methods: </strong>Whole blood from patients treated with tacrolimus or cyclosporin A at the Department of Nephrology and Departments of Rheumatology, Kanazawa University Hospital, from May 2018 to July 2019 was collected with informed consent, and drug concentrations were measured by CLAM-LC-MS/MS and by chemiluminescence immunoassay (CLIA) for tacrolimus and affinity column-mediated immunoassay (ACMIA) for cyclosporin A. Correlations between the CLAM-LC-MS/MS and immunoassay results were analyzed.</p><p><strong>Results: </strong>Two hundred and twenty-four blood samples from 80 patients were used for tacrolimus measurement, and 76 samples from 21 patients were used for cyclosporin A. Intra- and inter-assay precision values of quality controls were less than 7%. There were significant correlations between CLAM-LC-MS/MS and the immunoassays for tacrolimus and cyclosporin A (Spearman rank correlation coefficients: 0.861, 0.941, P < 0.00001 in each case). The drug concentrations measured by CLAM-LC-MS/MS were about 20% lower than those obtained using the immunoassays. CLAM-LC-MS/MS maintenance requirements did not interfere with clinical operations. Compared to manual pretreatment, automated pretreatment by CLAM showed lower inter-assay precision values and greatly reduced the pretreatment time.</p><p><strong>Conclusions: </strong>The results obtained by CLAM-LC-MS/MS were highly correlated with those of commercial immunoassay methods. CLAM-LC-MS/MS offers advantages in clinical TDM practice, including simple, automatic pretreatment, low maintenance requirement, and avoidance of interference.</p>","PeriodicalId":16730,"journal":{"name":"Journal of Pharmaceutical Health Care and Sciences","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Health Care and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40780-023-00318-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Therapeutic drug monitoring (TDM) systems generally use either liquid chromatography/tandem mass spectrometry (LC-MS/MS) or immunoassay, though both methodologies have disadvantages. In this study, we aimed to evaluate whether a CLAM-LC-MS/MS system, which consists of a sample preparation module directly connected to LC-MS/MS, could be used for clinical TDM work for immunosuppressive drugs in whole blood, which requires a hemolytic process. For this purpose, we prospectively validated this system for clinical measurement of tacrolimus and cyclosporin A in patients' whole blood. The results were also compared with those of commercial immunoassays.
Methods: Whole blood from patients treated with tacrolimus or cyclosporin A at the Department of Nephrology and Departments of Rheumatology, Kanazawa University Hospital, from May 2018 to July 2019 was collected with informed consent, and drug concentrations were measured by CLAM-LC-MS/MS and by chemiluminescence immunoassay (CLIA) for tacrolimus and affinity column-mediated immunoassay (ACMIA) for cyclosporin A. Correlations between the CLAM-LC-MS/MS and immunoassay results were analyzed.
Results: Two hundred and twenty-four blood samples from 80 patients were used for tacrolimus measurement, and 76 samples from 21 patients were used for cyclosporin A. Intra- and inter-assay precision values of quality controls were less than 7%. There were significant correlations between CLAM-LC-MS/MS and the immunoassays for tacrolimus and cyclosporin A (Spearman rank correlation coefficients: 0.861, 0.941, P < 0.00001 in each case). The drug concentrations measured by CLAM-LC-MS/MS were about 20% lower than those obtained using the immunoassays. CLAM-LC-MS/MS maintenance requirements did not interfere with clinical operations. Compared to manual pretreatment, automated pretreatment by CLAM showed lower inter-assay precision values and greatly reduced the pretreatment time.
Conclusions: The results obtained by CLAM-LC-MS/MS were highly correlated with those of commercial immunoassay methods. CLAM-LC-MS/MS offers advantages in clinical TDM practice, including simple, automatic pretreatment, low maintenance requirement, and avoidance of interference.