Yaru Wang, Shuhuai Li, Xionghui Ma, Chaohai Pang, Yuwei Wu, Mingyue Wang, Bei Li, Sixin Liu
{"title":"Fluorescent Probes Based on Ag NPs@N/GQDs and Molecularly Imprinted Polymer for Sensitive Detection of Noradrenaline in Bananas.","authors":"Yaru Wang, Shuhuai Li, Xionghui Ma, Chaohai Pang, Yuwei Wu, Mingyue Wang, Bei Li, Sixin Liu","doi":"10.1007/s10895-023-03565-w","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence intensity and selective recognition ability are crucial factors in determining the analytical techniques for fluorescent probes. In this study, a core-shell fluorescent material, composed of silver nanoparticles@nitrogen-doped graphene quantum dots (Ag NPs@N/GQDs), was synthesised using mango leaves as the raw material through a thermal cracking method, resulting in strong fluorescence luminescence intensity. By employing noradrenaline as a template molecule and using a surface molecular imprinting technique, a molecularly imprinted membrane (MIP) was formed on the surface of the fluorescent material, that was subsequently eluted to obtain a highly specific, fluorescent probe capable of recognising noradrenaline. The probe captured various concentrations of noradrenaline using the MIP, which decreased the fluorescence intensity. Then a method for detecting trace amounts of noradrenaline was established. This method exhibited a linear range from 0.5 -700 pM with a detection limit of 0.154 pM. The proposed method was implemented in banana samples. Satisfactory recoveries were confirmed at four different concentrations. The method presented a relative standard deviation (RSD) of less than 5.0%.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"877-886"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03565-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescence intensity and selective recognition ability are crucial factors in determining the analytical techniques for fluorescent probes. In this study, a core-shell fluorescent material, composed of silver nanoparticles@nitrogen-doped graphene quantum dots (Ag NPs@N/GQDs), was synthesised using mango leaves as the raw material through a thermal cracking method, resulting in strong fluorescence luminescence intensity. By employing noradrenaline as a template molecule and using a surface molecular imprinting technique, a molecularly imprinted membrane (MIP) was formed on the surface of the fluorescent material, that was subsequently eluted to obtain a highly specific, fluorescent probe capable of recognising noradrenaline. The probe captured various concentrations of noradrenaline using the MIP, which decreased the fluorescence intensity. Then a method for detecting trace amounts of noradrenaline was established. This method exhibited a linear range from 0.5 -700 pM with a detection limit of 0.154 pM. The proposed method was implemented in banana samples. Satisfactory recoveries were confirmed at four different concentrations. The method presented a relative standard deviation (RSD) of less than 5.0%.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.