Manoel Rios, Klaus Magno Becker, Ana Sofia Monteiro, Pedro Fonseca, David B Pyne, Victor Machado Reis, Daniel Moreira-Gonçalves, Ricardo J Fernandes
{"title":"Effect of the Fran CrossFit Workout on Oxygen Uptake Kinetics, Energetics, and Postexercise Muscle Function in Trained CrossFitters.","authors":"Manoel Rios, Klaus Magno Becker, Ana Sofia Monteiro, Pedro Fonseca, David B Pyne, Victor Machado Reis, Daniel Moreira-Gonçalves, Ricardo J Fernandes","doi":"10.1123/ijspp.2023-0201","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Fran is one of the most popular CrossFit benchmark workouts used to control CrossFitters' improvements. Detailed physiological characterization of Fran is needed for a more specific evaluation of CrossFitters' training performance improvements. The aim of the study was to analyze the oxygen uptake (V˙O2) kinetics and characterize the energy system contributions and the degree of postexercise fatigue of the unbroken Fran.</p><p><strong>Methods: </strong>Twenty trained CrossFitters performed Fran at maximal exertion. V˙O2 and heart-rate kinetics were assessed at baseline and during and post-Fran. Blood lactate and glucose concentrations and muscular fatigue were measured at baseline and in the recovery period.</p><p><strong>Results: </strong>A marked increase in V˙O2 kinetics was observed at the beginning of Fran, remaining elevated until the end (V˙O2peak: 49.2 [3.7] mL·kg-1·min-1, V˙O2 amplitude: 35.8 [5.2] mL·kg-1·min-1, time delay: 4.7 [2.5] s and time constant: 23.7 [11.1] s; mean [SD]). Aerobic, anaerobic lactic, and alactic pathways accounted for 62% (4%), 26% (4%), and 12% (2%) of energy contribution. Reduction in muscle function in jumping ability (jump height: 8% [6%], peak force: 6% [4%], and maximum velocity: 4% [2%]) and plank prone test (46% [20%]) was observed in the recovery period.</p><p><strong>Conclusions: </strong>The Fran unbroken workout is a high-intensity effort associated with an elevated metabolic response. This pattern of energy response highlights the primary contribution of aerobic energy metabolism, even during short and very intense CrossFit workouts, and that recovery can take >24 hours due to cumulative fatigue.</p>","PeriodicalId":14295,"journal":{"name":"International journal of sports physiology and performance","volume":" ","pages":"299-306"},"PeriodicalIF":3.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sports physiology and performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/ijspp.2023-0201","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Fran is one of the most popular CrossFit benchmark workouts used to control CrossFitters' improvements. Detailed physiological characterization of Fran is needed for a more specific evaluation of CrossFitters' training performance improvements. The aim of the study was to analyze the oxygen uptake (V˙O2) kinetics and characterize the energy system contributions and the degree of postexercise fatigue of the unbroken Fran.
Methods: Twenty trained CrossFitters performed Fran at maximal exertion. V˙O2 and heart-rate kinetics were assessed at baseline and during and post-Fran. Blood lactate and glucose concentrations and muscular fatigue were measured at baseline and in the recovery period.
Results: A marked increase in V˙O2 kinetics was observed at the beginning of Fran, remaining elevated until the end (V˙O2peak: 49.2 [3.7] mL·kg-1·min-1, V˙O2 amplitude: 35.8 [5.2] mL·kg-1·min-1, time delay: 4.7 [2.5] s and time constant: 23.7 [11.1] s; mean [SD]). Aerobic, anaerobic lactic, and alactic pathways accounted for 62% (4%), 26% (4%), and 12% (2%) of energy contribution. Reduction in muscle function in jumping ability (jump height: 8% [6%], peak force: 6% [4%], and maximum velocity: 4% [2%]) and plank prone test (46% [20%]) was observed in the recovery period.
Conclusions: The Fran unbroken workout is a high-intensity effort associated with an elevated metabolic response. This pattern of energy response highlights the primary contribution of aerobic energy metabolism, even during short and very intense CrossFit workouts, and that recovery can take >24 hours due to cumulative fatigue.
期刊介绍:
The International Journal of Sports Physiology and Performance (IJSPP) focuses on sport physiology and performance and is dedicated to advancing the knowledge of sport and exercise physiologists, sport-performance researchers, and other sport scientists. The journal publishes authoritative peer-reviewed research in sport physiology and related disciplines, with an emphasis on work having direct practical applications in enhancing sport performance in sport physiology and related disciplines. IJSPP publishes 10 issues per year: January, February, March, April, May, July, August, September, October, and November.