Decreased NMIIA heavy chain phosphorylation at S1943 promotes mitoxantrone resistance by upregulating BCRP and N-cadherin expression in breast cancer cells.
Kemin Li, Tian Li, Yanan Niu, Yu Gao, Yifan Shi, Yifan He, Xuanping Zhang, Yan Wang, Jing Cao, Xiaoling Hu, Min Chen, Ruizan Shi
{"title":"Decreased NMIIA heavy chain phosphorylation at S1943 promotes mitoxantrone resistance by upregulating BCRP and N-cadherin expression in breast cancer cells.","authors":"Kemin Li, Tian Li, Yanan Niu, Yu Gao, Yifan Shi, Yifan He, Xuanping Zhang, Yan Wang, Jing Cao, Xiaoling Hu, Min Chen, Ruizan Shi","doi":"10.1139/bcb-2023-0232","DOIUrl":null,"url":null,"abstract":"<p><p>Mitoxantrone (MX) is an effective treatment for breast cancer; however, high efflux of MX that is accomplished by breast cancer resistance protein (BCRP) leads to acquired multidrug resistance (MDR), reducing MX's therapeutic efficacy in breast cancer. Non-muscle myosin IIA (NMIIA) and its heavy phosphorylation at S1943 have been revealed to play key roles in tumor metastasis and progression, including in breast cancer; however, their molecular function in BCRP-mediated MDR in breast cancer remains unknown. In this study, we revealed that the expression of NMIIA heavy chain phosphorylation at S1943 was downregulated in BCRP-overexpressing breast cancer MCF-7/MX cells, and stable expression of NMIIA-S1943A mutant increased BCRP expression and promoted the resistance of MCF-7/MX cells to MX. Meanwhile, NMIIA S1943 phosphorylation induced by epidermal growth factor (EGF) was accompanied by the downregulation of BCRP in MCF-7/MX cells. Furthermore, stable expression of NMIIA-S1943A in MCF-7/MX cells resulted in upregulation of N-cadherin and the accumulation of β-catenin on the cell surface, which inhibited the nucleus translocation of β-catenin and Wnt/β-catenin-based proliferative signaling. EGF stimulation of MCF-7/MX cells showed the downregulation of N-cadherin and β-catenin. Our results suggest that decreased NMIIA heavy phosphorylation at S1943 increases BCRP expression and promotes MX resistance in breast cancer cells via upregulating N-cadherin expression.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"213-225"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2023-0232","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitoxantrone (MX) is an effective treatment for breast cancer; however, high efflux of MX that is accomplished by breast cancer resistance protein (BCRP) leads to acquired multidrug resistance (MDR), reducing MX's therapeutic efficacy in breast cancer. Non-muscle myosin IIA (NMIIA) and its heavy phosphorylation at S1943 have been revealed to play key roles in tumor metastasis and progression, including in breast cancer; however, their molecular function in BCRP-mediated MDR in breast cancer remains unknown. In this study, we revealed that the expression of NMIIA heavy chain phosphorylation at S1943 was downregulated in BCRP-overexpressing breast cancer MCF-7/MX cells, and stable expression of NMIIA-S1943A mutant increased BCRP expression and promoted the resistance of MCF-7/MX cells to MX. Meanwhile, NMIIA S1943 phosphorylation induced by epidermal growth factor (EGF) was accompanied by the downregulation of BCRP in MCF-7/MX cells. Furthermore, stable expression of NMIIA-S1943A in MCF-7/MX cells resulted in upregulation of N-cadherin and the accumulation of β-catenin on the cell surface, which inhibited the nucleus translocation of β-catenin and Wnt/β-catenin-based proliferative signaling. EGF stimulation of MCF-7/MX cells showed the downregulation of N-cadherin and β-catenin. Our results suggest that decreased NMIIA heavy phosphorylation at S1943 increases BCRP expression and promotes MX resistance in breast cancer cells via upregulating N-cadherin expression.
期刊介绍:
Published since 1929, Biochemistry and Cell Biology explores every aspect of general biochemistry and includes up-to-date coverage of experimental research into cellular and molecular biology in eukaryotes, as well as review articles on topics of current interest and notes contributed by recognized international experts. Special issues each year are dedicated to expanding new areas of research in biochemistry and cell biology.