{"title":"Genome-wide association analysis revealed new QTL and candidate genes affecting the teat number in Dutch Large White pigs","authors":"Michao Deng, Zijian Qiu, Chenxi Liu, Lijing Zhong, Xinfeng Fan, Yuquan Han, Ran Wang, Pinghua Li, Ruihua Huang, Qingbo Zhao","doi":"10.1111/age.13397","DOIUrl":null,"url":null,"abstract":"<p>Teat number (TNUM) is an important reproductive trait of sows, which affects the weaning survival rate of piglets. In this study, 1166 Dutch Large White pigs with TNUM phenotype were used as the research object. These pigs were genotyped by 50K SNP chip and the chip data were further imputed to the resequencing level. The estimated heritabilities of left teat number (LTN), right teat number (RTN) and total teat number (TTN) were 0.21, 0.19 and 0.3, respectively. Based on chip data, significant SNPs for RTN on SSC2, SSC5, SSC9 and SSC13 were identified using genome-wide association analysis (GWAS). Significant SNPs for TTN were identified on SSC2, SSC5 and SSC7. Based on imputed data, the GWAS identified a significant SNP (rs329158522) for LTN on SSC17, two significant SNPs (rs342855242 and rs80813115) for RTN on SSC2 and SSC9, and two significant SNPs (rs327003548 and rs326943811) for TTN on SSC5 and SSC6. Among them, four novel QTL were discovered. The Bayesian fine-mapping method was used to fine map the QTL identified in the GWAS of the imputed data, and the confidence intervals of QTL affecting LTN (SSC17: 45.22–46.20 Mb), RTN (SSC9: 122.18–122.80 Mb) and TTN (SSC5: 14.01–15.91 Mb, SSC6: 120.06–121.25 Mb) were detected. A total of 52 candidate genes were obtained. Furthermore, we identified five candidate genes, <i>WNT10B</i>, <i>AQP5</i>, <i>FMNL3</i>, <i>NUAK1</i> and <i>CKAP4</i>, for the first time, which involved in breast development and other related functions by gene annotation. Overall, this study provides new molecular markers for the breeding of teat number in pigs.</p>","PeriodicalId":7905,"journal":{"name":"Animal genetics","volume":"55 2","pages":"206-216"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/age.13397","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13397","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Teat number (TNUM) is an important reproductive trait of sows, which affects the weaning survival rate of piglets. In this study, 1166 Dutch Large White pigs with TNUM phenotype were used as the research object. These pigs were genotyped by 50K SNP chip and the chip data were further imputed to the resequencing level. The estimated heritabilities of left teat number (LTN), right teat number (RTN) and total teat number (TTN) were 0.21, 0.19 and 0.3, respectively. Based on chip data, significant SNPs for RTN on SSC2, SSC5, SSC9 and SSC13 were identified using genome-wide association analysis (GWAS). Significant SNPs for TTN were identified on SSC2, SSC5 and SSC7. Based on imputed data, the GWAS identified a significant SNP (rs329158522) for LTN on SSC17, two significant SNPs (rs342855242 and rs80813115) for RTN on SSC2 and SSC9, and two significant SNPs (rs327003548 and rs326943811) for TTN on SSC5 and SSC6. Among them, four novel QTL were discovered. The Bayesian fine-mapping method was used to fine map the QTL identified in the GWAS of the imputed data, and the confidence intervals of QTL affecting LTN (SSC17: 45.22–46.20 Mb), RTN (SSC9: 122.18–122.80 Mb) and TTN (SSC5: 14.01–15.91 Mb, SSC6: 120.06–121.25 Mb) were detected. A total of 52 candidate genes were obtained. Furthermore, we identified five candidate genes, WNT10B, AQP5, FMNL3, NUAK1 and CKAP4, for the first time, which involved in breast development and other related functions by gene annotation. Overall, this study provides new molecular markers for the breeding of teat number in pigs.
期刊介绍:
Animal Genetics reports frontline research on immunogenetics, molecular genetics and functional genomics of economically important and domesticated animals. Publications include the study of variability at gene and protein levels, mapping of genes, traits and QTLs, associations between genes and traits, genetic diversity, and characterization of gene or protein expression and control related to phenotypic or genetic variation.
The journal publishes full-length articles, short communications and brief notes, as well as commissioned and submitted mini-reviews on issues of interest to Animal Genetics readers.