Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jonas Motter , Caecilie M. M. Benckendorff , Sarah Westarp , Peter Sunde-Brown , Peter Neubauer , Anke Kurreck , Gavin J. Miller
{"title":"Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology","authors":"Jonas Motter ,&nbsp;Caecilie M. M. Benckendorff ,&nbsp;Sarah Westarp ,&nbsp;Peter Sunde-Brown ,&nbsp;Peter Neubauer ,&nbsp;Anke Kurreck ,&nbsp;Gavin J. Miller","doi":"10.1039/d3np00051f","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: 2019 to 2023</p></div><div><p>Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.</p></div>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056824000345","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Covering: 2019 to 2023

Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.

Abstract Image

Abstract Image

嘌呤核苷抗生素:利用化学和生物学的最新合成进展。
覆盖时间:2019 年至 2023 年核苷类似物是最重要的小分子药物类别之一,其治疗开发已在肿瘤学和病毒感染治疗领域取得成功。然而,目前还没有核苷类似物用于临床治疗细菌感染。尽管如此,已知大量临床认可的核苷类似物具有一定的抗生素活性,从而为这一领域的新疗法发现提供了潜在的来源。此外,鉴于抗生素耐药性的增加,发现新的临床候选药物仍然是全球的当务之急,而天然产物衍生的核苷类似物也可能为新模式提供丰富的发现空间。本《亮点》涵盖 2019 年至 2023 年发表的研究成果,介绍了当前围绕天然嘌呤核苷类抗生素合成的观点。通过将合成化学的最新研究成果与生物合成认识的进步以及重组酶的使用相结合,详细介绍了不同结构类别嘌呤的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信