Classical shadows with Pauli-invariant unitary ensembles

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Kaifeng Bu, Dax Enshan Koh, Roy J. Garcia, Arthur Jaffe
{"title":"Classical shadows with Pauli-invariant unitary ensembles","authors":"Kaifeng Bu, Dax Enshan Koh, Roy J. Garcia, Arthur Jaffe","doi":"10.1038/s41534-023-00801-w","DOIUrl":null,"url":null,"abstract":"<p>Classical shadows provide a noise-resilient and sample-efficient method for learning quantum system properties, relying on a user-specified unitary ensemble. What is the weakest assumption on this ensemble that can still yield meaningful results? To address this, we focus on Pauli-invariant unitary ensembles—those invariant under multiplication by Pauli operators. For these ensembles, we present explicit formulas for the reconstruction map and sample complexity bounds and extend our results to the case when noise impacts the protocol implementation. Two applications are explored: one for locally scrambled unitary ensembles, where we present formulas for the reconstruction map and sample complexity bounds that circumvent the need to solve an exponential-sized linear system, and another for the classical shadows of quantum channels. Our results establish a unified framework for classical shadows with Pauli-invariant unitary ensembles, applicable to both noisy and noiseless scenarios for states and channels and primed for implementation on near-term quantum devices.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"46 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-023-00801-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Classical shadows provide a noise-resilient and sample-efficient method for learning quantum system properties, relying on a user-specified unitary ensemble. What is the weakest assumption on this ensemble that can still yield meaningful results? To address this, we focus on Pauli-invariant unitary ensembles—those invariant under multiplication by Pauli operators. For these ensembles, we present explicit formulas for the reconstruction map and sample complexity bounds and extend our results to the case when noise impacts the protocol implementation. Two applications are explored: one for locally scrambled unitary ensembles, where we present formulas for the reconstruction map and sample complexity bounds that circumvent the need to solve an exponential-sized linear system, and another for the classical shadows of quantum channels. Our results establish a unified framework for classical shadows with Pauli-invariant unitary ensembles, applicable to both noisy and noiseless scenarios for states and channels and primed for implementation on near-term quantum devices.

具有保利不变单元集合的经典阴影
经典阴影为学习量子系统特性提供了一种抗噪且样本效率高的方法,它依赖于用户指定的单元集合。这种集合的最弱假设是什么?为了解决这个问题,我们将重点放在保利不变单元集合上--那些在保利算子乘法下不变的集合。对于这些集合,我们提出了重建图和采样复杂度边界的明确公式,并将结果扩展到噪声影响协议执行的情况。我们探讨了两个应用:一个是局部扰乱的单元集合,我们提出了重构图和采样复杂度边界的公式,从而避免了求解指数大小线性系统的需要;另一个是量子信道的经典阴影。我们的研究成果为经典阴影与保利不变单元集合建立了统一的框架,适用于有噪声和无噪声的状态和信道场景,并可在近期量子设备上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信