Hao An, Xiaoli Yu, Yumei Liu, Lei Fang, Ming Shu, Qingfeng Zhai, Junhao Chen
{"title":"Downregulation of transcription 1 hinders the replication of Dabie bandavirus by promoting the expression of TLR7, TLR8, and TLR9 signaling pathway","authors":"Hao An, Xiaoli Yu, Yumei Liu, Lei Fang, Ming Shu, Qingfeng Zhai, Junhao Chen","doi":"10.1016/j.ttbdis.2023.102307","DOIUrl":null,"url":null,"abstract":"<div><p>Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS, with a case fatality rate of up to 30 %. The innate immune system plays a crucial role in the defense against SFTSV; however, the impact of viral propagation of STFSV on the innate immune system remains unclear. Although proteomics analysis revealed that the expression of the downregulator of transcription 1 (DR1) increased after SFTSV infection, the specific change trend and the functional role of DR1 during viral infection remain unelucidated. In this study, we demonstrate that DR1 was highly expressed in response to SFTSV infection in HEK 293T cells using qRT-PCR and Western blot analysis. Furthermore, viral replication significantly increased the expression of various TLRs, especially TLR9. Our data indicated that DR1 positively regulated the expression of TLRs in HEK 293T cells, DR1 overexpression highly increased the expression of numerous TLRs, whereas RNAi-mediated DR1 silencing decreased TLR expression. Additionally, the myeloid differentiation primary response gene 88 (MyD88)-dependent or TIR-domain-containing adaptor inducing interferon-β (TRIF)-dependent signaling pathways were highly up- and downregulated by the overexpression and silencing of DR1, respectively. Finally, we report that DR1 stimulates the expression of TLR7, TLR8, and TLR9, thereby upregulating the TRIF-dependent and MyD88-dependent signaling pathways during the SFTSV infection, attenuating viral replication, and enhancing the production of type I interferon and various inflammatory factors, including IL-1β, IL-6, and IL-8. These results imply that DR1 defends against SFTSV replication by inducing the expression of TLR7, TLR8, and TLR9. Collectively, our findings revealed a novel role and mechanism of DR1 in mediating antiviral responses and innate immunity.</p></div>","PeriodicalId":49320,"journal":{"name":"Ticks and Tick-borne Diseases","volume":"15 2","pages":"Article 102307"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877959X23001887/pdfft?md5=5151809683775a58b23269b9ff159af8&pid=1-s2.0-S1877959X23001887-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ticks and Tick-borne Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877959X23001887","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS, with a case fatality rate of up to 30 %. The innate immune system plays a crucial role in the defense against SFTSV; however, the impact of viral propagation of STFSV on the innate immune system remains unclear. Although proteomics analysis revealed that the expression of the downregulator of transcription 1 (DR1) increased after SFTSV infection, the specific change trend and the functional role of DR1 during viral infection remain unelucidated. In this study, we demonstrate that DR1 was highly expressed in response to SFTSV infection in HEK 293T cells using qRT-PCR and Western blot analysis. Furthermore, viral replication significantly increased the expression of various TLRs, especially TLR9. Our data indicated that DR1 positively regulated the expression of TLRs in HEK 293T cells, DR1 overexpression highly increased the expression of numerous TLRs, whereas RNAi-mediated DR1 silencing decreased TLR expression. Additionally, the myeloid differentiation primary response gene 88 (MyD88)-dependent or TIR-domain-containing adaptor inducing interferon-β (TRIF)-dependent signaling pathways were highly up- and downregulated by the overexpression and silencing of DR1, respectively. Finally, we report that DR1 stimulates the expression of TLR7, TLR8, and TLR9, thereby upregulating the TRIF-dependent and MyD88-dependent signaling pathways during the SFTSV infection, attenuating viral replication, and enhancing the production of type I interferon and various inflammatory factors, including IL-1β, IL-6, and IL-8. These results imply that DR1 defends against SFTSV replication by inducing the expression of TLR7, TLR8, and TLR9. Collectively, our findings revealed a novel role and mechanism of DR1 in mediating antiviral responses and innate immunity.
期刊介绍:
Ticks and Tick-borne Diseases is an international, peer-reviewed scientific journal. It publishes original research papers, short communications, state-of-the-art mini-reviews, letters to the editor, clinical-case studies, announcements of pertinent international meetings, and editorials.
The journal covers a broad spectrum and brings together various disciplines, for example, zoology, microbiology, molecular biology, genetics, mathematical modelling, veterinary and human medicine. Multidisciplinary approaches and the use of conventional and novel methods/methodologies (in the field and in the laboratory) are crucial for deeper understanding of the natural processes and human behaviour/activities that result in human or animal diseases and in economic effects of ticks and tick-borne pathogens. Such understanding is essential for management of tick populations and tick-borne diseases in an effective and environmentally acceptable manner.