Exact solutions to the Erdős-Rothschild problem

IF 1.2 2区 数学 Q1 MATHEMATICS
Oleg Pikhurko, Katherine Staden
{"title":"Exact solutions to the Erdős-Rothschild problem","authors":"Oleg Pikhurko, Katherine Staden","doi":"10.1017/fms.2023.117","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\boldsymbol {k} := (k_1,\\ldots ,k_s)$</span></span></img></span></span> be a sequence of natural numbers. For a graph <span>G</span>, let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$F(G;\\boldsymbol {k})$</span></span></img></span></span> denote the number of colourings of the edges of <span>G</span> with colours <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$1,\\dots ,s$</span></span></img></span></span> such that, for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$c \\in \\{1,\\dots ,s\\}$</span></span></img></span></span>, the edges of colour <span>c</span> contain no clique of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$k_c$</span></span></img></span></span>. Write <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$F(n;\\boldsymbol {k})$</span></span></img></span></span> to denote the maximum of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$F(G;\\boldsymbol {k})$</span></span></img></span></span> over all graphs <span>G</span> on <span>n</span> vertices. There are currently very few known exact (or asymptotic) results for this problem, posed by Erdős and Rothschild in 1974. We prove some new exact results for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$n \\to \\infty $</span></span></img></span></span>: </p><ol><li><p><span>(i)</span> A sufficient condition on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\boldsymbol {k}$</span></span></img></span></span> which guarantees that every extremal graph is a complete multipartite graph, which systematically recovers all existing exact results.</p></li><li><p><span>(ii)</span> Addressing the original question of Erdős and Rothschild, in the case <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\boldsymbol {k}=(3,\\ldots ,3)$</span></span></img></span></span> of length <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$7$</span></span></img></span></span>, the unique extremal graph is the complete balanced <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$8$</span></span></img></span></span>-partite graph, with colourings coming from Hadamard matrices of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$8$</span></span></img></span></span>.</p></li><li><p><span>(iii)</span> In the case <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$\\boldsymbol {k}=(k+1,k)$</span></span></img></span></span>, for which the sufficient condition in (i) does not hold, for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105145234572-0397:S2050509423001172:S2050509423001172_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$3 \\leq k \\leq 10$</span></span></img></span></span>, the unique extremal graph is complete <span>k</span>-partite with one part of size less than <span>k</span> and the other parts as equal in size as possible.</p></li></ol><p></p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.117","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Abstract Image$\boldsymbol {k} := (k_1,\ldots ,k_s)$ be a sequence of natural numbers. For a graph G, let Abstract Image$F(G;\boldsymbol {k})$ denote the number of colourings of the edges of G with colours Abstract Image$1,\dots ,s$ such that, for every Abstract Image$c \in \{1,\dots ,s\}$, the edges of colour c contain no clique of order Abstract Image$k_c$. Write Abstract Image$F(n;\boldsymbol {k})$ to denote the maximum of Abstract Image$F(G;\boldsymbol {k})$ over all graphs G on n vertices. There are currently very few known exact (or asymptotic) results for this problem, posed by Erdős and Rothschild in 1974. We prove some new exact results for Abstract Image$n \to \infty $:

  1. (i) A sufficient condition on Abstract Image$\boldsymbol {k}$ which guarantees that every extremal graph is a complete multipartite graph, which systematically recovers all existing exact results.

  2. (ii) Addressing the original question of Erdős and Rothschild, in the case Abstract Image$\boldsymbol {k}=(3,\ldots ,3)$ of length Abstract Image$7$, the unique extremal graph is the complete balanced Abstract Image$8$-partite graph, with colourings coming from Hadamard matrices of order Abstract Image$8$.

  3. (iii) In the case Abstract Image$\boldsymbol {k}=(k+1,k)$, for which the sufficient condition in (i) does not hold, for Abstract Image$3 \leq k \leq 10$, the unique extremal graph is complete k-partite with one part of size less than k and the other parts as equal in size as possible.

厄尔多斯-罗斯柴尔德问题的精确解
让 $\boldsymbol {k} := (k_1,\ldots ,k_s)$ 是一个自然数序列。对于一个图 G,让 $F(G;\boldsymbol {k})$ 表示 G 中颜色为 $1,\dots,s$的边的着色数,对于 \{1,\dots ,s\}$中的每一个 $c,颜色为 c 的边都不包含阶数为 $k_c$ 的簇。写$F(n;\boldsymbol {k})$表示在n个顶点上的所有图G中$F(G;\boldsymbol {k})$的最大值。这个问题由 Erdős 和 Rothschild 于 1974 年提出,目前已知的精确(或渐近)结果很少。我们为 $n \to \infty $ 证明了一些新的精确结果:(i) $\boldsymbol {k}$ 上的一个充分条件,它保证了每个极值图都是一个完整的多方图,系统地恢复了所有已有的精确结果。(ii) 针对厄尔多斯和罗斯柴尔德的原始问题,在长度为 $7$ 的 $\boldsymbol {k}=(3,\ldots ,3)$ 情况下,唯一的极值图是完整的平衡 $8$ 多方图,其着色来自阶数为 $8$ 的哈达玛矩阵。(iii) 在$\boldsymbol {k}=(k+1,k)$的情况下,(i)中的充分条件不成立,对于$3 \leq k \leq 10$,唯一的极值图是完整的k-partite图,其中一部分的大小小于k,其他部分的大小尽可能相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信