Wentao Bao , Ying Tang , Jie Yu , Wenxia Yan , Chenxu Wang , Yangyang Li , Zhimou Wang , Jinfeng Yang , Lili Zhang , Feng Yu
{"title":"Si-doped ZnAl-LDH nanosheets by layer-engineering for efficient photoelectrocatalytic water splitting","authors":"Wentao Bao , Ying Tang , Jie Yu , Wenxia Yan , Chenxu Wang , Yangyang Li , Zhimou Wang , Jinfeng Yang , Lili Zhang , Feng Yu","doi":"10.1016/j.apcatb.2024.123706","DOIUrl":null,"url":null,"abstract":"<div><p><span>A highly efficient Si-doped ZnAl-LDH (denoted as Si-ZnAl-LDH nanosheet) catalyst that is derived from large-area chemical exfoliation for photoelectrocatalytic water splitting. The formation of amorphous Si-ZnAl-LDH nanosheets through chemical exfoliation or layer engineering leads to much more accessible surfaces that originally are not accessible in highly crystalline ZnAl-LDH sheets. The incorporation of Si to highly exfoliated ZnAl-LDH nanosheets generates more oxygen vacancies, increases the number of active sites, redistributes the local charge density of the active centers and effectively suppresses the recombination of the generated electron-hole pairs. Specifically, the overpotential of HER and OER for Si-ZnAl-LDH nanosheet is 108 mV and 260 mV, respectively, at current density of 10 mA cm</span><sup>−2</sup> under light-assisted conditions. Total applied voltage is 1.673 V for water splitting in a full cell. This work provides a novel chemical exfoliation or layer-engineering strategy for the synthesis of scalable and cost-effective LDH nanosheets with efficient photoelectric response.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000171","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A highly efficient Si-doped ZnAl-LDH (denoted as Si-ZnAl-LDH nanosheet) catalyst that is derived from large-area chemical exfoliation for photoelectrocatalytic water splitting. The formation of amorphous Si-ZnAl-LDH nanosheets through chemical exfoliation or layer engineering leads to much more accessible surfaces that originally are not accessible in highly crystalline ZnAl-LDH sheets. The incorporation of Si to highly exfoliated ZnAl-LDH nanosheets generates more oxygen vacancies, increases the number of active sites, redistributes the local charge density of the active centers and effectively suppresses the recombination of the generated electron-hole pairs. Specifically, the overpotential of HER and OER for Si-ZnAl-LDH nanosheet is 108 mV and 260 mV, respectively, at current density of 10 mA cm−2 under light-assisted conditions. Total applied voltage is 1.673 V for water splitting in a full cell. This work provides a novel chemical exfoliation or layer-engineering strategy for the synthesis of scalable and cost-effective LDH nanosheets with efficient photoelectric response.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.