Modeling and Analysis of an Age-Structured Malaria Model in the Sense of Atangana–Baleanu Fractional Operators

IF 1.3 4区 数学 Q1 MATHEMATICS
Dawit Kechine Menbiko, Chernet Tuge Deressa
{"title":"Modeling and Analysis of an Age-Structured Malaria Model in the Sense of Atangana–Baleanu Fractional Operators","authors":"Dawit Kechine Menbiko, Chernet Tuge Deressa","doi":"10.1155/2024/6652037","DOIUrl":null,"url":null,"abstract":"In this paper, integer- and fractional-order models are discussed to investigate the dynamics of malaria in a human host with a varied age distribution. A system of differential equation model with five human state variables and two mosquito state variables was examined. Preschool-age (0–5) and young-age individuals make up our model’s division of the human population. We investigated the existence of an area in which the model is both mathematically and epidemiologically well posed. According to the findings of our mathematical research, the disease-free equilibrium exists whenever the fundamental reproduction number <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.1624 11.927\" width=\"13.1624pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"></path></g></svg> is smaller than one and is asymptotically stable. The disease-free equilibrium point is unstable when <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"></path></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"></path></g></svg>.</span></span> We showed that the endemic equilibrium point is unique for <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"><use xlink:href=\"#g117-92\"></use></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>.</span></span> Also, the most influential control parameters of the spread of malaria were identified. Numerical simulations of both classical and fractional order were conducted, and we used ODE (45) for classical part and numerical technique developed by Toufik and Atangana for fractional order. The infected population will grow because of the high biting frequency of the mosquito and the high likelihood of transmission from the infected mosquito to the susceptible human. <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.414 8.8423\" width=\"19.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.783,0)\"></path></g></svg><span></span><span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"22.9961838 -8.6359 28.187 8.8423\" width=\"28.187pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.046,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.286,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.25,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,38.49,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,44.73,0)\"><use xlink:href=\"#g113-51\"></use></g></svg>,</span></span> which is more than one, indicating that the mosquito vector keeps on growing. This supports the stability of the endemic equilibrium point theorem, which states that the disease becomes endemic when <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.414 8.8423\" width=\"19.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.783,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"22.9961838 -8.6359 6.422 8.8423\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.046,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>.</span></span> The susceptible human population will decrease because of the presence of the infective mosquito, which has a high biting frequency for the first couple of days. Since the infective mosquito bit the susceptible human, the susceptible human became infected and went to the infected human compartments. Then, the susceptible population will decrease and the infested human population will increase. After a certain amount of time, it becomes zero due to the growth of protected classes. In this case, a disease-free equilibrium point exists and is stable. This condition exists because <span><svg height=\"14.7272pt\" style=\"vertical-align:-3.2911pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 24.295 14.7272\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"14.7272pt\" style=\"vertical-align:-3.2911pt\" version=\"1.1\" viewbox=\"27.8771838 -11.4361 38.463 14.7272\" width=\"38.463pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.167,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.131,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,43.371,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,49.611,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,58.759,0)\"></path></g></svg><span></span><svg height=\"14.7272pt\" style=\"vertical-align:-3.2911pt\" version=\"1.1\" viewbox=\"69.2451838 -11.4361 23.344 14.7272\" width=\"23.344pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,69.295,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,75.535,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,81.822,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,87.382,-5.741)\"></path></g></svg></span> is less than 1. This supports the theorem that the stability of the disease-free equilibrium point is obtained when <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"></path></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>.</span></span> Depending on equation, we have shown that the possibility of some endemic equilibria exists when <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>,</span></span> that is, it undergoes backward bifurcation, even when the disease-free equilibrium is locally stable, and the result means that the society may misunderstand the level of malaria prevalence in the community.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"54 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6652037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, integer- and fractional-order models are discussed to investigate the dynamics of malaria in a human host with a varied age distribution. A system of differential equation model with five human state variables and two mosquito state variables was examined. Preschool-age (0–5) and young-age individuals make up our model’s division of the human population. We investigated the existence of an area in which the model is both mathematically and epidemiologically well posed. According to the findings of our mathematical research, the disease-free equilibrium exists whenever the fundamental reproduction number is smaller than one and is asymptotically stable. The disease-free equilibrium point is unstable when . We showed that the endemic equilibrium point is unique for . Also, the most influential control parameters of the spread of malaria were identified. Numerical simulations of both classical and fractional order were conducted, and we used ODE (45) for classical part and numerical technique developed by Toufik and Atangana for fractional order. The infected population will grow because of the high biting frequency of the mosquito and the high likelihood of transmission from the infected mosquito to the susceptible human. , which is more than one, indicating that the mosquito vector keeps on growing. This supports the stability of the endemic equilibrium point theorem, which states that the disease becomes endemic when . The susceptible human population will decrease because of the presence of the infective mosquito, which has a high biting frequency for the first couple of days. Since the infective mosquito bit the susceptible human, the susceptible human became infected and went to the infected human compartments. Then, the susceptible population will decrease and the infested human population will increase. After a certain amount of time, it becomes zero due to the growth of protected classes. In this case, a disease-free equilibrium point exists and is stable. This condition exists because is less than 1. This supports the theorem that the stability of the disease-free equilibrium point is obtained when . Depending on equation, we have shown that the possibility of some endemic equilibria exists when , that is, it undergoes backward bifurcation, even when the disease-free equilibrium is locally stable, and the result means that the society may misunderstand the level of malaria prevalence in the community.
阿坦加纳-巴莱阿努分式算子意义上的年龄结构疟疾模型建模与分析
本文讨论了整数阶和分数阶模型,以研究疟疾在不同年龄分布的人类宿主中的动态变化。研究了一个包含五个人类状态变量和两个蚊子状态变量的微分方程模型系统。学龄前(0-5 岁)和年轻个体构成了我们模型中的人类群体。我们研究了该模型在数学上和流行病学上是否存在合理的区域。根据我们的数学研究结果,只要基本繁殖数小于 1,就存在无疾病平衡点,并且是渐近稳定的。当 . 时,无病平衡点不稳定。我们的研究表明,在 ......时,地方病平衡点是唯一的。此外,我们还确定了对疟疾传播影响最大的控制参数。我们进行了经典阶和分数阶的数值模拟,经典阶采用 ODE (45),分数阶采用 Toufik 和 Atangana 开发的数值技术。由于蚊子的叮咬频率很高,受感染的蚊子传播给易感人类的可能性也很高,因此受感染的蚊子数量会增加。在该模型中,蚊媒的数量大于 1,表明蚊媒在不断增长。这支持了地方病平衡点定理的稳定性,即当 。由于感染性蚊子的存在,易感人群数量会减少,而感染性蚊子在最初几天的叮咬频率很高。由于有传染性的蚊子叮咬了易感人群,易感人群受到感染,进入了有传染性的人群区。然后,易感人群会减少,受感染人群会增加。经过一定时间后,由于受保护人群的增加,受保护人群的数量将变为零。在这种情况下,无疾病平衡点存在并稳定。这一条件的存在是因为小于 1。这支持了无疾病平衡点的稳定性定理,即当 。根据等式,我们已经证明,当 ,即发生向后分叉时,即使无病均衡点局部稳定,也存在某些地方病均衡点的可能性,这一结果意味着社会可能会误解社区的疟疾流行水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信