{"title":"Electrochemical oxidation of losartan on a BDD electrode: Influence of cathodes and electrolytes on the degradation kinetics and pathways","authors":"Rebecca Dhawle , Ardiana Kajtazi , Maria Sakellariou , Zacharias Frontistis , Frederic Lynen , Dionissios Mantzavinos","doi":"10.1016/j.wri.2024.100240","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the influence of supporting electrolytes (sodium sulfate and sodium chloride) on the electrochemical oxidation of the antihypertensive drug losartan (LOS) was studied under different operating conditions such as current density (4.1–12.5 mA cm<sup>−2</sup>), electrolyte concentration (0.05–0.5 M), initial pollutant concentration (250–1000 μg L<sup>−1</sup>) and solution pH. The role of cathodes on the removal of LOS has been investigated using five different cathodes with carbonaceous cathodes showing better LOS removal. The effect of matrix composition has been studied using simulated water spiked with various constituents and real water matrices such as bottled water (BW) and wastewater (WW). The removal of LOS was pronounced while using a chloride electrolyte as compared to the sulfate electrolyte. The apparent rate constant increased on adding persulfate (PS) up to concentrations of 150 mg L<sup>−1</sup> and decreased in the presence of bicarbonates and organic matter. The transformation products (TPs) formed during the electrochemical oxidation depended on the supporting electrolyte and two common TPs were identified in both electrolytes with a total of 4 TPs identified in the chloride medium and 7 TPs in the sulfate medium. Degradation pathways for LOS in both electrolytes have also been proposed.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"31 ","pages":"Article 100240"},"PeriodicalIF":4.5000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212371724000027/pdfft?md5=e6a6a272150ef51cc2e781c9c7a415a6&pid=1-s2.0-S2212371724000027-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371724000027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the influence of supporting electrolytes (sodium sulfate and sodium chloride) on the electrochemical oxidation of the antihypertensive drug losartan (LOS) was studied under different operating conditions such as current density (4.1–12.5 mA cm−2), electrolyte concentration (0.05–0.5 M), initial pollutant concentration (250–1000 μg L−1) and solution pH. The role of cathodes on the removal of LOS has been investigated using five different cathodes with carbonaceous cathodes showing better LOS removal. The effect of matrix composition has been studied using simulated water spiked with various constituents and real water matrices such as bottled water (BW) and wastewater (WW). The removal of LOS was pronounced while using a chloride electrolyte as compared to the sulfate electrolyte. The apparent rate constant increased on adding persulfate (PS) up to concentrations of 150 mg L−1 and decreased in the presence of bicarbonates and organic matter. The transformation products (TPs) formed during the electrochemical oxidation depended on the supporting electrolyte and two common TPs were identified in both electrolytes with a total of 4 TPs identified in the chloride medium and 7 TPs in the sulfate medium. Degradation pathways for LOS in both electrolytes have also been proposed.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry