{"title":"Mobile detection of cataracts with an optimised lightweight deep Edge Intelligent technique","authors":"Dipta Neogi, Mahirul Alam Chowdhury, Mst. Moriom Akter, Md. Ishan Arefin Hossain","doi":"10.1049/cps2.12083","DOIUrl":null,"url":null,"abstract":"<p>Testing the visual field is a valuable diagnostic tool for identifying eye conditions such as cataract, glaucoma, and retinal disease. Its quick and straightforward testing process has become an essential component in our efforts to prevent blindness. Still, the device must be accessible to the general masses. This research has developed a machine learning model that can work with Edge devices like smartphones. As a result, it is opening the opportunity to integrate the disease-detecting model into multiple Edge devices to automate their operation. The authors intend to use convolutional neural network (CNN) and deep learning to deduce which optimisers have the best results when detecting cataracts from live photos of eyes. This is done by comparing different models and optimisers. Using these methods, a reliable model can be obtained that detects cataracts. The proposed TensorFlow Lite model constructed by combining CNN layers and Adam in this study is called Optimised Light Weight Sequential Deep Learning Model (SDLM). SDLM is trained using a smaller number of CNN layers and parameters, which gives SDLM its compatibility, fast execution time, and low memory requirements. The proposed Android app, I-Scan, uses SDLM in the form of TensorFlow Lite for demonstration of the model in Edge devices.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":"9 3","pages":"269-281"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12083","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Testing the visual field is a valuable diagnostic tool for identifying eye conditions such as cataract, glaucoma, and retinal disease. Its quick and straightforward testing process has become an essential component in our efforts to prevent blindness. Still, the device must be accessible to the general masses. This research has developed a machine learning model that can work with Edge devices like smartphones. As a result, it is opening the opportunity to integrate the disease-detecting model into multiple Edge devices to automate their operation. The authors intend to use convolutional neural network (CNN) and deep learning to deduce which optimisers have the best results when detecting cataracts from live photos of eyes. This is done by comparing different models and optimisers. Using these methods, a reliable model can be obtained that detects cataracts. The proposed TensorFlow Lite model constructed by combining CNN layers and Adam in this study is called Optimised Light Weight Sequential Deep Learning Model (SDLM). SDLM is trained using a smaller number of CNN layers and parameters, which gives SDLM its compatibility, fast execution time, and low memory requirements. The proposed Android app, I-Scan, uses SDLM in the form of TensorFlow Lite for demonstration of the model in Edge devices.