{"title":"Thermal stability of permafrost under U-shaped crushed rock embankment of the Qinghai‒Tibet Railway","authors":"Kun-Ming Xu , Guan-Li Jiang , Ji Chen , Qing-Bai Wu","doi":"10.1016/j.accre.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>The U-shaped crushed rock embankment (UCRE), of which widely utilized in the permafrost regions along the Qinghai‒Tibet Railway, has the capability to rapidly reduce the ground temperature of the underlying permafrost. However, there remains uncertainty regarding the adaptation of UCRE to climate change and its long-term cooling trend. This study focuses on nine UCRE monitoring sites along the Qinghai‒Tibet Railway to analyze the dynamic variations of the ground temperature underlying permafrost from 2006 to 2020. The efficiency of UCRE in stabilizing permafrost temperature in different permafrost zones is evaluated by considering the permafrost table, ground temperature, and MAGT, as well as the temperature difference between the top and bottom of the crushed rock layer and the ground temperature variation index (GTVI). The results show that UCRE is suitable for application in extremely unstable warm permafrost regions where the MAGT is higher than −0.5 °C. Moreover, UCRE effectively diminishes the disparity in permafrost thermal stability between the sunny and shaded shoulders of the embankment. The short-term and long-term effect of cooling permafrost is experiencing a change related with permafrost stability. Notably, in stable cold permafrost regions with MAGT lower than −1.5 °C, the long-term cooling effect of UCRE on permafrost seems to gradually diminishes, but UCRE continues to fulfill the role of stabilizing the underlying permafrost thermal state over the long-term. These results show that UCRE can quickly restore and stabilize the thermal state of permafrost in the early stages of construction, and adapt to the influence of future climate change. The findings provide important guidance for understanding the variations of permafrost thermal stability beneath the embankment in permafrost regions, as well as for improving the embankment stability and operational safety of the Qinghai‒Tibet Railway.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 1","pages":"Pages 158-169"},"PeriodicalIF":6.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927823001594/pdfft?md5=c3184a3c1b1f04bb9a590865f478eaca&pid=1-s2.0-S1674927823001594-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927823001594","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The U-shaped crushed rock embankment (UCRE), of which widely utilized in the permafrost regions along the Qinghai‒Tibet Railway, has the capability to rapidly reduce the ground temperature of the underlying permafrost. However, there remains uncertainty regarding the adaptation of UCRE to climate change and its long-term cooling trend. This study focuses on nine UCRE monitoring sites along the Qinghai‒Tibet Railway to analyze the dynamic variations of the ground temperature underlying permafrost from 2006 to 2020. The efficiency of UCRE in stabilizing permafrost temperature in different permafrost zones is evaluated by considering the permafrost table, ground temperature, and MAGT, as well as the temperature difference between the top and bottom of the crushed rock layer and the ground temperature variation index (GTVI). The results show that UCRE is suitable for application in extremely unstable warm permafrost regions where the MAGT is higher than −0.5 °C. Moreover, UCRE effectively diminishes the disparity in permafrost thermal stability between the sunny and shaded shoulders of the embankment. The short-term and long-term effect of cooling permafrost is experiencing a change related with permafrost stability. Notably, in stable cold permafrost regions with MAGT lower than −1.5 °C, the long-term cooling effect of UCRE on permafrost seems to gradually diminishes, but UCRE continues to fulfill the role of stabilizing the underlying permafrost thermal state over the long-term. These results show that UCRE can quickly restore and stabilize the thermal state of permafrost in the early stages of construction, and adapt to the influence of future climate change. The findings provide important guidance for understanding the variations of permafrost thermal stability beneath the embankment in permafrost regions, as well as for improving the embankment stability and operational safety of the Qinghai‒Tibet Railway.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.