{"title":"Implementation of blockchain technology in integrated IoT networks for constructing scalable ITS systems in India","authors":"Arya Kharche, Sanskar Badholia, Ram Krishna Upadhyay","doi":"10.1016/j.bcra.2024.100188","DOIUrl":null,"url":null,"abstract":"<div><p>The implementation of blockchain technology in integrated IoT networks for constructing scalable Intelligent Transportation Systems (ITSs) in India has the potential to revolutionize the way we approach transportation. By leveraging the power of IoT and blockchain, we can create a highly secure, transparent, and efficient system that can transform the way we move people and goods. India, one of the world’s most populous countries, has a highly congested and inefficient transportation system that often leads to delays, accidents, and waste of time and resources. The integration of IoT and blockchain can help address these issues by enabling real-time monitoring, tracking, and optimization of traffic flows, thereby reducing congestion, improving safety, and increasing the overall efficiency of the transportation system. This paper explores the potential of blockchain technology in the context of integrated IoT networks for constructing scalable ITS systems in India. The methodology followed is to develop a proof-of-concept blockchain-based application for ITS, implement the blockchain solution into the existing ITS infrastructure, and ensure proper integration and compatibility with other systems. Conduct thorough research and maintenance to ensure the reliability and sustainability of such blockchain-based systems. This research discusses the various benefits and challenges of this approach and the various applications of this technology in the transportation sector, including the green sustainability concept. The results find various ways in which such implementations of blockchain and IoT-Machine Learning (IoT-ML) can revolutionize transportation systems.</p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096720924000010/pdfft?md5=f0df3bf2f2a306097761b6d525acf13d&pid=1-s2.0-S2096720924000010-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720924000010","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The implementation of blockchain technology in integrated IoT networks for constructing scalable Intelligent Transportation Systems (ITSs) in India has the potential to revolutionize the way we approach transportation. By leveraging the power of IoT and blockchain, we can create a highly secure, transparent, and efficient system that can transform the way we move people and goods. India, one of the world’s most populous countries, has a highly congested and inefficient transportation system that often leads to delays, accidents, and waste of time and resources. The integration of IoT and blockchain can help address these issues by enabling real-time monitoring, tracking, and optimization of traffic flows, thereby reducing congestion, improving safety, and increasing the overall efficiency of the transportation system. This paper explores the potential of blockchain technology in the context of integrated IoT networks for constructing scalable ITS systems in India. The methodology followed is to develop a proof-of-concept blockchain-based application for ITS, implement the blockchain solution into the existing ITS infrastructure, and ensure proper integration and compatibility with other systems. Conduct thorough research and maintenance to ensure the reliability and sustainability of such blockchain-based systems. This research discusses the various benefits and challenges of this approach and the various applications of this technology in the transportation sector, including the green sustainability concept. The results find various ways in which such implementations of blockchain and IoT-Machine Learning (IoT-ML) can revolutionize transportation systems.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.