A study on distribution characteristics of volatile organic compounds in Paju industrial complex area, using proton transfer reaction-time of flight mass spectrometry
{"title":"A study on distribution characteristics of volatile organic compounds in Paju industrial complex area, using proton transfer reaction-time of flight mass spectrometry","authors":"So-Young Kim","doi":"10.1007/s44273-023-00023-8","DOIUrl":null,"url":null,"abstract":"<div><p>Paju City is located in the northwest of Gyeonggi-do, and its chemical emissions in 2020 were 1,287,917 kg, the 4th highest in Gyeonggi-do. In particular, the Munsan High-Tech Industrial Complex in Paju has LCD manufacturing plants and partner companies distributed in groups, and the volatile organic compounds used by these companies are causing many problems, such as causing bad odors, to the local community. In this sense, real-time analyzing equipment (proton-transfer-reaction time-of-flight mass spectrometry) was mounted on a vehicle for this study to look into the air quality around VOCs-using companies inside the High-tech Industrial Complex in Munsan, Paju from October 19 to October 21, 2020.</p><p>According to measurement results, toluene was detected the most at 25.7 ppb, followed by carbon tetrachloride (17.6 ppb), ethylbenzene (17.2 ppb), and xylene (8.5 ppb), which demonstrates that there is a need to control these substances to resolve the issue with VOCs in the region. In particular, benzene designated as the air quality standard was detected at 1.0 ppb in some sites, which is below the threshold (1.5 ppb). However, it was detected at 2.1 to 4.4 ppb, exceeding the threshold in most sites. Thus, continuous monitoring is expected to keep VOCs under control in Paju Industrial Complex down the road, using real-time measuring equipment.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":"18 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-023-00023-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-023-00023-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Paju City is located in the northwest of Gyeonggi-do, and its chemical emissions in 2020 were 1,287,917 kg, the 4th highest in Gyeonggi-do. In particular, the Munsan High-Tech Industrial Complex in Paju has LCD manufacturing plants and partner companies distributed in groups, and the volatile organic compounds used by these companies are causing many problems, such as causing bad odors, to the local community. In this sense, real-time analyzing equipment (proton-transfer-reaction time-of-flight mass spectrometry) was mounted on a vehicle for this study to look into the air quality around VOCs-using companies inside the High-tech Industrial Complex in Munsan, Paju from October 19 to October 21, 2020.
According to measurement results, toluene was detected the most at 25.7 ppb, followed by carbon tetrachloride (17.6 ppb), ethylbenzene (17.2 ppb), and xylene (8.5 ppb), which demonstrates that there is a need to control these substances to resolve the issue with VOCs in the region. In particular, benzene designated as the air quality standard was detected at 1.0 ppb in some sites, which is below the threshold (1.5 ppb). However, it was detected at 2.1 to 4.4 ppb, exceeding the threshold in most sites. Thus, continuous monitoring is expected to keep VOCs under control in Paju Industrial Complex down the road, using real-time measuring equipment.