Polyelectrolyte complex‐based thermochromic hydrogels containing carbonized polymer dots for smart windows with fast response, excellent solar modulation ability, and high durability

SmartMat Pub Date : 2024-01-02 DOI:10.1002/smm2.1256
Yuting Wang, Xu Fang, Siheng Li, Ni An, Hongyu Pan, Junqi Sun
{"title":"Polyelectrolyte complex‐based thermochromic hydrogels containing carbonized polymer dots for smart windows with fast response, excellent solar modulation ability, and high durability","authors":"Yuting Wang, Xu Fang, Siheng Li, Ni An, Hongyu Pan, Junqi Sun","doi":"10.1002/smm2.1256","DOIUrl":null,"url":null,"abstract":"Thermochromic smart windows have gained increasing popularity in light modulation and energy management in buildings. However, the fabrication of flexible thermochromic smart windows with high luminous transmittance (Tlum), tailorable critical temperature (τc), strong solar modulation ability (ΔTsol), and long‐term durability remains a huge challenge. In this study, hydrogel‐based thermochromic smart windows are fabricated by sandwiching thermochromic hydrogels of polyallylamine hydrochloride, polyacrylic acid, and carbonized polymer dots (CPDs) complexes between two pieces of transparent substrates. Benefiting from the incorporation of nanosized CPDs, the thermochromic hydrogel has an ultrahigh Tlum of ~98.7%, a desirable τc of ~24.2 °C, a ΔTsol of ~89.3% and a rapid transition time of ~3 s from opaque state to transparent state. Moreover, the thermochromic hydrogel exhibits excellent anti‐freezing ability, tight adhesion toward various substrates, and excellent self‐healing capability. The self‐healing capability enables the fabrication of large‐area smart windows by welding multiple hydrogel pieces. The smart windows retain their original thermochromic properties after being stored under ambient conditions for at least 147 days or undergoing 10,000 uninterrupted heating/cooling cycles. The model houses with smart windows can achieve a temperature reduction of 9.2 °C, demonstrating the excellent indoor temperature modulation performance of the smart windows.","PeriodicalId":510850,"journal":{"name":"SmartMat","volume":"107 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermochromic smart windows have gained increasing popularity in light modulation and energy management in buildings. However, the fabrication of flexible thermochromic smart windows with high luminous transmittance (Tlum), tailorable critical temperature (τc), strong solar modulation ability (ΔTsol), and long‐term durability remains a huge challenge. In this study, hydrogel‐based thermochromic smart windows are fabricated by sandwiching thermochromic hydrogels of polyallylamine hydrochloride, polyacrylic acid, and carbonized polymer dots (CPDs) complexes between two pieces of transparent substrates. Benefiting from the incorporation of nanosized CPDs, the thermochromic hydrogel has an ultrahigh Tlum of ~98.7%, a desirable τc of ~24.2 °C, a ΔTsol of ~89.3% and a rapid transition time of ~3 s from opaque state to transparent state. Moreover, the thermochromic hydrogel exhibits excellent anti‐freezing ability, tight adhesion toward various substrates, and excellent self‐healing capability. The self‐healing capability enables the fabrication of large‐area smart windows by welding multiple hydrogel pieces. The smart windows retain their original thermochromic properties after being stored under ambient conditions for at least 147 days or undergoing 10,000 uninterrupted heating/cooling cycles. The model houses with smart windows can achieve a temperature reduction of 9.2 °C, demonstrating the excellent indoor temperature modulation performance of the smart windows.
基于聚电解质复合物的热致变色水凝胶,含有碳化聚合物点,可用于具有快速响应、出色的太阳能调节能力和高耐久性的智能窗户
热变色智能窗在建筑物的光调节和能源管理方面越来越受欢迎。然而,如何制造具有高透光率(Tlum)、可调临界温度(τc)、强太阳调制能力(ΔTsol)和长期耐久性的柔性热致变色智能窗仍然是一个巨大的挑战。本研究将聚烯丙基胺盐酸盐、聚丙烯酸和碳化聚合物点(CPDs)复合物的热致变色水凝胶夹在两片透明基底之间,制成了基于水凝胶的热致变色智能窗。得益于纳米级 CPDs 的加入,该热致变色水凝胶具有约 98.7% 的超高 Tlum 值、约 24.2 °C 的理想 τc 值、约 89.3% 的 ΔTsol 值以及约 3 秒的从不透明状态到透明状态的快速转换时间。此外,这种热致变色水凝胶还表现出卓越的抗冻能力、对各种基底的紧密粘附性以及出色的自愈合能力。由于具有自愈合能力,因此可以通过焊接多片水凝胶来制造大面积的智能窗。智能窗在环境条件下存放至少 147 天或经历 10,000 次不间断加热/冷却循环后,仍能保持原有的热变色特性。装有智能窗的样板房可实现 9.2 °C的降温,证明了智能窗出色的室内温度调节性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信