Microfluidic fiber spinning for 3D bioprinting: Harnessing microchannels to build macrotissues

IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Federico Serpe, C. Casciola, Giancarlo Ruocco, Gianluca Cidonio, C. Scognamiglio
{"title":"Microfluidic fiber spinning for 3D bioprinting: Harnessing microchannels to build macrotissues","authors":"Federico Serpe, C. Casciola, Giancarlo Ruocco, Gianluca Cidonio, C. Scognamiglio","doi":"10.36922/ijb.1404","DOIUrl":null,"url":null,"abstract":"Microfluidics is rapidly revolutionizing the scientific panorama, providing unmatched high-throughput platforms that find application in numerous areas of physics, chemistry, biology, and materials science. Recently, microfluidic chips have been proposed, in combination with bioactive materials, as promising tools for spinning cell-laden fibers with on-demand characteristics. However, cells encapsulated in filaments produced via microfluidic spinning technology are confined in a quasi-three-dimensional (3D) environment that fails to replicate the intricate 3D architecture of biological tissues. Thanks to the recent synergistic combination of microfluidic devices with 3D bioprinting technologies that enable the production of sophisticated microfibers serving as the backbone of 3D structures, a new age of tissue engineering is emerging. This review looks at how combining microfluidics with 3D printing is contributing to the biofabrication of relevant human substitutes and implants. This paper also describes the whole manufacturing process from the production of the microfluidic tool to the printing of tissue models, focusing on cutting-edge fabrication technologies and emphasizing the most noticeable achievements for microfluidic spinning technology. A theoretical insight for thixotropic hydrogels is also proposed to predict the fiber size and shear stress developing within microfluidic channels. The potential of using microfluidic chips as bio-printheads for multi-material and multi-cellular bioprinting is discussed, highlighting the challenges that microfluidic bioprinting still faces in advancing the field of biofabrication for tissue engineering and regenerative medicine purposes.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"109 23","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.1404","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidics is rapidly revolutionizing the scientific panorama, providing unmatched high-throughput platforms that find application in numerous areas of physics, chemistry, biology, and materials science. Recently, microfluidic chips have been proposed, in combination with bioactive materials, as promising tools for spinning cell-laden fibers with on-demand characteristics. However, cells encapsulated in filaments produced via microfluidic spinning technology are confined in a quasi-three-dimensional (3D) environment that fails to replicate the intricate 3D architecture of biological tissues. Thanks to the recent synergistic combination of microfluidic devices with 3D bioprinting technologies that enable the production of sophisticated microfibers serving as the backbone of 3D structures, a new age of tissue engineering is emerging. This review looks at how combining microfluidics with 3D printing is contributing to the biofabrication of relevant human substitutes and implants. This paper also describes the whole manufacturing process from the production of the microfluidic tool to the printing of tissue models, focusing on cutting-edge fabrication technologies and emphasizing the most noticeable achievements for microfluidic spinning technology. A theoretical insight for thixotropic hydrogels is also proposed to predict the fiber size and shear stress developing within microfluidic channels. The potential of using microfluidic chips as bio-printheads for multi-material and multi-cellular bioprinting is discussed, highlighting the challenges that microfluidic bioprinting still faces in advancing the field of biofabrication for tissue engineering and regenerative medicine purposes.
用于三维生物打印的微流体纤维纺丝:利用微通道构建大组织
微流控技术正在迅速革新科学领域,它提供了无与伦比的高通量平台,可应用于物理、化学、生物和材料科学的众多领域。最近,有人提出将微流控芯片与生物活性材料结合起来,作为按需纺制含有细胞的纤维的理想工具。然而,通过微流体纺丝技术生产的纤维丝中包裹的细胞被限制在一个准三维(3D)环境中,无法复制生物组织错综复杂的三维结构。近年来,微流体设备与三维生物打印技术协同结合,生产出作为三维结构骨架的精密微纤维,组织工程的新时代正在到来。本综述探讨了微流控技术与三维打印技术的结合如何促进相关人体替代品和植入物的生物制造。本文还介绍了从生产微流控工具到打印组织模型的整个制造过程,重点关注最前沿的制造技术,并强调了微流控纺丝技术最显著的成就。此外,还提出了触变性水凝胶的理论见解,以预测微流体通道内纤维尺寸和剪切应力的发展。讨论了使用微流控芯片作为生物打印头进行多材料和多细胞生物打印的潜力,强调了微流控生物打印在推进用于组织工程和再生医学的生物制造领域中仍然面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
4.80%
发文量
81
期刊介绍: The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信