Solution of the fractional diffusion equation by using Caputo-Fabrizio derivative: application to intrinsic arsenic diffusion in germanium

M. Meftah, A. A. Souigat, Z. Korichi
{"title":"Solution of the fractional diffusion equation by using Caputo-Fabrizio derivative: application to intrinsic arsenic diffusion in germanium","authors":"M. Meftah, A. A. Souigat, Z. Korichi","doi":"10.31349/revmexfis.70.010501","DOIUrl":null,"url":null,"abstract":"In this work, we focused on solving the space-time fractional diffusion equation with an application on the intrinsic arsenic diffusion in germanium. At first we have treated the differential equation in a semi-infinite medium by using Caputo-Fabrizio fractional derivative. We have introduced the Laplace transform to solve this type of equations. Secondly, Based on the obtained solution, we have simulated an profile of arsenic diffusion in germanium under intrinsic conditions. Accurate simulations have been achieved showing that the fractional derivative orders affect on the estimation of the diffusion coefficient, where increasing the time fractional derivative order α reduces the value of the diffusion coefficient, while increasing the space fractional derivative order β increases the value of the diffusion coefficient.","PeriodicalId":207412,"journal":{"name":"Revista Mexicana de Física","volume":"140 43","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana de Física","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfis.70.010501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we focused on solving the space-time fractional diffusion equation with an application on the intrinsic arsenic diffusion in germanium. At first we have treated the differential equation in a semi-infinite medium by using Caputo-Fabrizio fractional derivative. We have introduced the Laplace transform to solve this type of equations. Secondly, Based on the obtained solution, we have simulated an profile of arsenic diffusion in germanium under intrinsic conditions. Accurate simulations have been achieved showing that the fractional derivative orders affect on the estimation of the diffusion coefficient, where increasing the time fractional derivative order α reduces the value of the diffusion coefficient, while increasing the space fractional derivative order β increases the value of the diffusion coefficient.
利用卡普托-法布里齐奥导数求解分数扩散方程:应用于锗中砷的本征扩散
在这项工作中,我们重点解决了时空分数扩散方程,并将其应用于锗中砷的本征扩散。首先,我们利用 Caputo-Fabrizio 分数导数处理了半无限介质中的微分方程。我们引入了拉普拉斯变换来求解这类方程。其次,根据求解结果,我们模拟了锗中砷在本征条件下的扩散情况。精确的模拟结果表明,分数导数阶数对扩散系数的估算有影响,增加时间分数导数阶数 α 会降低扩散系数的值,而增加空间分数导数阶数 β 则会增加扩散系数的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信