Near-Infrared Fluorescent Probe with pH- and Viscosity-Switchable Performance for the Detection of Thrombi in Live Animals and Organs

Jinlan Luo, Changyong Song, Yunling Chen and Keyin Liu*, 
{"title":"Near-Infrared Fluorescent Probe with pH- and Viscosity-Switchable Performance for the Detection of Thrombi in Live Animals and Organs","authors":"Jinlan Luo,&nbsp;Changyong Song,&nbsp;Yunling Chen and Keyin Liu*,&nbsp;","doi":"10.1021/cbmi.3c00110","DOIUrl":null,"url":null,"abstract":"<p >Blood viscosity changes and blood clots are high-impact diseases, but the pathogenic mechanisms and detection methods are still limited. Due to the complexity of the cellular microenvironment, viscosity is a key factor in regulating the behavior of mitochondria and lysosomes in cells. Conventional fluorescence probes are highly restrictive for complex viscosity detection in live animals. Therefore, we developed two near-infrared fluorescence probes, <b>QL1</b> and <b>QL2</b>, with dual responses to the pH and viscosity. Notably, <b>QL2</b> has two maximum fluorescence emissions at 680 and 750 nm, when excitation by 580 and 700 nm, respectively. <b>QL2</b> exhibited both a pH and viscosity switchable fluorescence response. The two emission peaks exhibited a reverse change trend: the fluorescence at 680 nm decreased by 90%, and the fluorescence at 750 nm increased by about 5-fold with pH from 2 to 10. Meanwhile, both emission peaks show remarkable fluorescence enhancement toward viscosity change, with 185 and 32 times enhancement, respectively. The sensing mechanism and spectral changes are confirmed by DFT calculations. <b>QL2</b> was further used for viscosity imaging in live cells, zebrafish, and live animals. Most importantly, <b>QL2</b> is able to successfully track changes in blood clots in live mice and organs, thus enabling the study of blood clots in cerebral strokes and the underlying pathological mechanisms.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 6","pages":"422–431"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00110","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Blood viscosity changes and blood clots are high-impact diseases, but the pathogenic mechanisms and detection methods are still limited. Due to the complexity of the cellular microenvironment, viscosity is a key factor in regulating the behavior of mitochondria and lysosomes in cells. Conventional fluorescence probes are highly restrictive for complex viscosity detection in live animals. Therefore, we developed two near-infrared fluorescence probes, QL1 and QL2, with dual responses to the pH and viscosity. Notably, QL2 has two maximum fluorescence emissions at 680 and 750 nm, when excitation by 580 and 700 nm, respectively. QL2 exhibited both a pH and viscosity switchable fluorescence response. The two emission peaks exhibited a reverse change trend: the fluorescence at 680 nm decreased by 90%, and the fluorescence at 750 nm increased by about 5-fold with pH from 2 to 10. Meanwhile, both emission peaks show remarkable fluorescence enhancement toward viscosity change, with 185 and 32 times enhancement, respectively. The sensing mechanism and spectral changes are confirmed by DFT calculations. QL2 was further used for viscosity imaging in live cells, zebrafish, and live animals. Most importantly, QL2 is able to successfully track changes in blood clots in live mice and organs, thus enabling the study of blood clots in cerebral strokes and the underlying pathological mechanisms.

Abstract Image

具有 pH 值和粘度可调性能的近红外荧光探针,用于检测活体动物和器官中的血栓
血液粘度变化和血栓是影响较大的疾病,但其致病机制和检测方法仍然有限。由于细胞微环境的复杂性,粘度是调节细胞内线粒体和溶酶体行为的关键因素。传统的荧光探针对活体动物复杂粘度的检测有很大限制。因此,我们开发了两种近红外荧光探针 QL1 和 QL2,它们对 pH 值和粘度具有双重响应。值得注意的是,QL2 在 580 纳米和 700 纳米激发下,分别在 680 纳米和 750 纳米处有两个最大荧光发射。QL2 同时表现出酸碱度和粘度可切换的荧光响应。这两个发射峰呈反向变化趋势:随着 pH 值从 2 到 10 的变化,680 nm 处的荧光减少了 90%,750 nm 处的荧光增加了约 5 倍。同时,随着粘度的变化,两个发射峰的荧光都有显著增强,分别增强了 185 倍和 32 倍。传感机制和光谱变化得到了 DFT 计算的证实。QL2 还被进一步用于活细胞、斑马鱼和活体动物的粘度成像。最重要的是,QL2 能够成功跟踪活体小鼠和器官中血凝块的变化,从而使脑卒中血凝块及其潜在病理机制的研究成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信