Improved State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Parameter Estimation and Multi-Innovation Adaptive Robust Unscented Kalman Filter
{"title":"Improved State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Parameter Estimation and Multi-Innovation Adaptive Robust Unscented Kalman Filter","authors":"Cheng Li, Gi-Woo Kim","doi":"10.3390/en17010272","DOIUrl":null,"url":null,"abstract":"In this study, an improved adaptive robust unscented Kalman Filter (ARUKF) is proposed for an accurate state-of-charge (SOC) estimation of battery management system (BMS) in electric vehicles (EV). The extended Kalman Filter (EKF) algorithm is first used to achieve online identification of the model parameters. Subsequently, the identified parameters obtained from the EKF are processed to obtain the SOC of the batteries using a multi-innovation adaptive robust unscented Kalman filter (MIARUKF), developed by the ARUKF based on the principle of multi-innovation. Co-estimation of parameters and SOC is ultimately achieved. The co-estimation algorithm EKF-MIARUKF uses a multi-timescale framework with model parameters estimated on a slow timescale and the SOC estimated on a fast timescale. The EKF-MIARUKF integrates the advantages of multiple Kalman filters and eliminates the disadvantages of a single Kalman filter. The proposed algorithm outperforms other algorithms in terms of accuracy because the average root mean square error (RMSE) and the mean absolute error (MAE) of the SOC estimation were the smallest under three dynamic conditions.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"57 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17010272","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an improved adaptive robust unscented Kalman Filter (ARUKF) is proposed for an accurate state-of-charge (SOC) estimation of battery management system (BMS) in electric vehicles (EV). The extended Kalman Filter (EKF) algorithm is first used to achieve online identification of the model parameters. Subsequently, the identified parameters obtained from the EKF are processed to obtain the SOC of the batteries using a multi-innovation adaptive robust unscented Kalman filter (MIARUKF), developed by the ARUKF based on the principle of multi-innovation. Co-estimation of parameters and SOC is ultimately achieved. The co-estimation algorithm EKF-MIARUKF uses a multi-timescale framework with model parameters estimated on a slow timescale and the SOC estimated on a fast timescale. The EKF-MIARUKF integrates the advantages of multiple Kalman filters and eliminates the disadvantages of a single Kalman filter. The proposed algorithm outperforms other algorithms in terms of accuracy because the average root mean square error (RMSE) and the mean absolute error (MAE) of the SOC estimation were the smallest under three dynamic conditions.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.