Mohamed A. Mesbah, Khairy Sayed, Adel Ahmed, Mahmoud Aref, Z. Elbarbary, A. Almuflih, Mahmoud A. Mossa
{"title":"Adaptive Control Approach for Accurate Current Sharing and Voltage Regulation in DC Microgrid Applications","authors":"Mohamed A. Mesbah, Khairy Sayed, Adel Ahmed, Mahmoud Aref, Z. Elbarbary, A. Almuflih, Mahmoud A. Mossa","doi":"10.3390/en17020284","DOIUrl":null,"url":null,"abstract":"A DC microgrid is an efficient way to combine diverse sources; conventional droop control is unable to achieve both accurate current sharing and required voltage regulation. This paper provides a new adaptive control approach for DC microgrid applications that satisfies both accurate current sharing and appropriate voltage regulation depending on the loading state. As the load increases in parallel, so do the output currents of the distributed generating units, and correct current sharing is necessary under severe load conditions. The suggested control approach raises the equivalent droop gains as the load level increases in parallel and provides accurate current sharing. The droop parameters were checked online and changed using the principal current sharing loops to reduce the variation in load current sharing, and the second loop also transferred the droop lines to eliminate DC microgrid bus voltage fluctuation in the adaptive droop controller, which is different and inventive. The proposed algorithm is tested using a variety of input voltages and load resistances. This work assesses the performance and stability of the suggested method using a linearized model and verifies the results using an acceptable model created in MATLAB/SIMULINK Software Version 9.3 and using Real-Time Simulation Fundamentals and hardware-based experimentation.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"80 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17020284","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A DC microgrid is an efficient way to combine diverse sources; conventional droop control is unable to achieve both accurate current sharing and required voltage regulation. This paper provides a new adaptive control approach for DC microgrid applications that satisfies both accurate current sharing and appropriate voltage regulation depending on the loading state. As the load increases in parallel, so do the output currents of the distributed generating units, and correct current sharing is necessary under severe load conditions. The suggested control approach raises the equivalent droop gains as the load level increases in parallel and provides accurate current sharing. The droop parameters were checked online and changed using the principal current sharing loops to reduce the variation in load current sharing, and the second loop also transferred the droop lines to eliminate DC microgrid bus voltage fluctuation in the adaptive droop controller, which is different and inventive. The proposed algorithm is tested using a variety of input voltages and load resistances. This work assesses the performance and stability of the suggested method using a linearized model and verifies the results using an acceptable model created in MATLAB/SIMULINK Software Version 9.3 and using Real-Time Simulation Fundamentals and hardware-based experimentation.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.