Excited-State Conjugation/De-Conjugation Driven Nonradiative Thermal Deactivation for Developing Fluorogenic Probes to Diagnose Cancers

Hongxing Zhang, Guanlin Lao, Mengxing Liu, Zhihui Jia, Jing Liu* and Wei Guo*, 
{"title":"Excited-State Conjugation/De-Conjugation Driven Nonradiative Thermal Deactivation for Developing Fluorogenic Probes to Diagnose Cancers","authors":"Hongxing Zhang,&nbsp;Guanlin Lao,&nbsp;Mengxing Liu,&nbsp;Zhihui Jia,&nbsp;Jing Liu* and Wei Guo*,&nbsp;","doi":"10.1021/cbmi.3c00107","DOIUrl":null,"url":null,"abstract":"<p >Fluorogenic probes have shown great potential in imaging biological species as well as in diagnosing diseases, especially cancers. However, the fluorogenic mechanisms are largely limited to a few photophysical processes to date, typically including photoinduced electron transfer (PeT), fluorescence resonant energy transfer (FRET), and intramolecular charge transfer (ICT). Herein, by calculations and experiments, we set forth that the inhibition of the excited-state π-conjugation in <i>meso</i>-ester Si-rhodamine <b>SiR-COOM</b> or the de-π-conjugation in <i>meso</i>-ester cyanine 5 <b>Cy5-COOM</b> via the “<i>ester-to-carboxylate</i>” conversion can operate as a general fluorogenic mechanism to fabricate fluorogenic probes. Based on the mechanism and considering the higher chemical stability of <b>Cy5-COOM</b> than that of <b>SiR-COOM</b>, we developed, as a proof-of-concept, three fluorogenic probes <b>Cy5-APN</b>, <b>Cy5-GGT</b>, and <b>Cy5-NTR</b> on the basis of the <b>Cy5-COOM</b> platform for sensing cancer biomarkers aminopeptidase N (APN), γ-glutamyltranspeptidase (GGT), and nitroreductase (NTR), respectively, and demonstrated their outstanding performances in distinguishing between cancerous and normal tissues with the high tumor-to-normal tissue ratios in the range of 9–14.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 6","pages":"432–441"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorogenic probes have shown great potential in imaging biological species as well as in diagnosing diseases, especially cancers. However, the fluorogenic mechanisms are largely limited to a few photophysical processes to date, typically including photoinduced electron transfer (PeT), fluorescence resonant energy transfer (FRET), and intramolecular charge transfer (ICT). Herein, by calculations and experiments, we set forth that the inhibition of the excited-state π-conjugation in meso-ester Si-rhodamine SiR-COOM or the de-π-conjugation in meso-ester cyanine 5 Cy5-COOM via the “ester-to-carboxylate” conversion can operate as a general fluorogenic mechanism to fabricate fluorogenic probes. Based on the mechanism and considering the higher chemical stability of Cy5-COOM than that of SiR-COOM, we developed, as a proof-of-concept, three fluorogenic probes Cy5-APN, Cy5-GGT, and Cy5-NTR on the basis of the Cy5-COOM platform for sensing cancer biomarkers aminopeptidase N (APN), γ-glutamyltranspeptidase (GGT), and nitroreductase (NTR), respectively, and demonstrated their outstanding performances in distinguishing between cancerous and normal tissues with the high tumor-to-normal tissue ratios in the range of 9–14.

Abstract Image

激发态共轭/去共轭驱动的非辐射热失活,用于开发诊断癌症的荧光探针
荧光探针在生物物种成像和疾病诊断(尤其是癌症)方面显示出巨大的潜力。然而,迄今为止,致荧光机制主要局限于几个光物理过程,通常包括光诱导电子转移(PeT)、荧光共振能量转移(FRET)和分子内电荷转移(ICT)。在此,我们通过计算和实验提出,抑制介壳Si-罗丹明SiR-COOM中的激发态π-共轭或通过 "酯-羧酸 "转换抑制介壳氰5 Cy5-COOM中的脱π-共轭,可以作为一种通用的致氟机制来制造致氟探针。基于这一机制,并考虑到 Cy5-COOM 比 SiR-COOM 具有更高的化学稳定性,我们在 Cy5-COOM 平台的基础上开发了 Cy5-APN、Cy5-GGT 和 Cy5-NTR 三种荧光探针,作为感测癌症生物标志物氨基肽酶 N(APN)的概念验证、它们在区分癌组织和正常组织方面表现出色,肿瘤与正常组织的比率高达 9-14 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信