Pyroelectricity induced by Schottky interface above the Curie temperature of bulk materials

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2024-02-21 DOI:10.1016/j.joule.2023.12.006
Hongyu Li , Chris R. Bowen , Huiyu Dan , Ya Yang
{"title":"Pyroelectricity induced by Schottky interface above the Curie temperature of bulk materials","authors":"Hongyu Li ,&nbsp;Chris R. Bowen ,&nbsp;Huiyu Dan ,&nbsp;Ya Yang","doi":"10.1016/j.joule.2023.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>Pyroelectricity is a characteristic property of materials that converts temperature fluctuations into electric signals. Ferroelectric materials, such as BaTiO<sub>3</sub>, are frequently applied in pyroelectric devices. However, the depolarization of the material above the Curie temperature (<em>T</em><sub>c</sub>) restricts the pyroelectric response of existing ferroelectric-based devices. Here, we propose an alternative approach where the pyroelectric response relates to the built-in electric field generated at a Schottky interface. The indium tin oxide/BaTiO<sub>3</sub>/LaNiO<sub>3</sub> film with a Schottky interface exhibits good pyroelectric performance when the operating temperature is ∼20°C higher than the <em>T</em><sub>c</sub> (125°C) of bulk BaTiO<sub>3</sub>. The film exhibits a pyroelectric current density of 0.537 μA/cm<sup>2</sup><span> and a high cyclic stability at 150°C. The pyroelectric film can operate as a self-powered temperature sensor above the </span><em>T</em><sub>c</sub> of bulk BaTiO<sub>3</sub><span>, with a response time of 30 ms. This study provides a new strategy to enhance the pyroelectric properties and reliability of ferroelectric-based devices.</span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 2","pages":"Pages 401-415"},"PeriodicalIF":38.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435123004981","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pyroelectricity is a characteristic property of materials that converts temperature fluctuations into electric signals. Ferroelectric materials, such as BaTiO3, are frequently applied in pyroelectric devices. However, the depolarization of the material above the Curie temperature (Tc) restricts the pyroelectric response of existing ferroelectric-based devices. Here, we propose an alternative approach where the pyroelectric response relates to the built-in electric field generated at a Schottky interface. The indium tin oxide/BaTiO3/LaNiO3 film with a Schottky interface exhibits good pyroelectric performance when the operating temperature is ∼20°C higher than the Tc (125°C) of bulk BaTiO3. The film exhibits a pyroelectric current density of 0.537 μA/cm2 and a high cyclic stability at 150°C. The pyroelectric film can operate as a self-powered temperature sensor above the Tc of bulk BaTiO3, with a response time of 30 ms. This study provides a new strategy to enhance the pyroelectric properties and reliability of ferroelectric-based devices.

Abstract Image

Abstract Image

块体材料居里温度以上的肖特基界面诱导的热释电性
热释电是材料将温度波动转化为电信号的一种特性。铁电材料(如 BaTiO3)经常被应用于热释电设备中。然而,材料在居里温度(Tc)以上的去极化限制了现有铁电基器件的热释电响应。在此,我们提出了一种替代方法,即热释电响应与肖特基界面上产生的内置电场有关。具有肖特基界面的氧化铟锡/BaTiO3/LaNiO3 薄膜在工作温度比块状 BaTiO3 的 Tc(125°C)高 20°C 时表现出良好的热释电性能。薄膜的热释电电流密度为 0.537 μA/cm2,在 150°C 时具有很高的循环稳定性。该热释电薄膜可作为自供电温度传感器工作,温度高于块状 BaTiO3 的 Tc,响应时间为 30 毫秒。这项研究为提高铁电基器件的热释电特性和可靠性提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信