Davood Poursina, B. Wade Brorsen, Dayton M. Lambert
{"title":"Optimal treatment placement for on-farm experiments: pseudo-Bayesian optimal designs with a linear response plateau model","authors":"Davood Poursina, B. Wade Brorsen, Dayton M. Lambert","doi":"10.1007/s11119-023-10105-w","DOIUrl":null,"url":null,"abstract":"<p>On-farm experiments are increasingly being used as their costs have decreased with technological advances in collecting, storing, and processing geospatial data. A question that has not been well addressed is what spatial experimental design is best for on-farm experiments when the goal is to estimate a spatially varying coefficients (SVC) model. The focus here is determining the optimal location of treatments to obtain a nearly D-optimal experimental design when estimating a linear plateau model. A pseudo-Bayesian approach is taken here because the field’s site-specific optimal nitrogen value is unknown. Optimal designs are generated, assuming a fixed number of replications for each treatment level. The resulting designs are more efficient than classic Latin square, strip plot, and completely randomized designs. The method consistently produces designs that have 95% efficiency or higher. Random designs had efficiencies varying from 41 to 64% with Latin squares having higher efficiencies and strip plots lower.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"2 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-023-10105-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
On-farm experiments are increasingly being used as their costs have decreased with technological advances in collecting, storing, and processing geospatial data. A question that has not been well addressed is what spatial experimental design is best for on-farm experiments when the goal is to estimate a spatially varying coefficients (SVC) model. The focus here is determining the optimal location of treatments to obtain a nearly D-optimal experimental design when estimating a linear plateau model. A pseudo-Bayesian approach is taken here because the field’s site-specific optimal nitrogen value is unknown. Optimal designs are generated, assuming a fixed number of replications for each treatment level. The resulting designs are more efficient than classic Latin square, strip plot, and completely randomized designs. The method consistently produces designs that have 95% efficiency or higher. Random designs had efficiencies varying from 41 to 64% with Latin squares having higher efficiencies and strip plots lower.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.