{"title":"Estimating canopy chlorophyll in slash pine using multitemporal vegetation indices from uncrewed aerial vehicles (UAVs)","authors":"Qifu Luan, Cong Xu, Xueyu Tao, Lihua Chen, Jingmin Jiang, Yanjie Li","doi":"10.1007/s11119-023-10106-9","DOIUrl":null,"url":null,"abstract":"<p>Canopy Chlorophyll Content (CCC) is an important physiological indicator that reflects the growth stage of trees. Accurate estimation of CCC facilitates dynamic monitoring and efficient forest management. In this study, we used high-resolution remote sensing images obtained by uncrewed aerial vehicles (UAVs) equipped with multispectral sensors (red, green, blue, near-infrared, and red-edge) to estimate CCC of lodgepole pine (<i>Pinus elliottii</i>). Our aim was to determine the optimal machine learning model between support vector regression (SVR) and random forest regression (RFR) for predicting CCC and to evaluate the effectiveness of multispectral bands along with 21 vegetation indices (VIs) in the estimation process. Individual tree boundaries were derived from the canopy height model (CHM) based on three-dimensional (3D) point clouds generated using structure from motion. These images, combined with continuous field measurements from January to December, provided comprehensive data for our analysis. The results showed that the SVR method outperformed the RFR method in estimating leaf chlorophyll content (LCC), with fitting R<sup>2</sup> values up to 0.692 and RMSE values up to 0.168 mg⋅g<sup>−1</sup>. Overall, the study highlights the potential of UAV-based remote sensing for multitemporal forest monitoring, offering advances in precision forestry and tree breeding.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"22 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-023-10106-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Canopy Chlorophyll Content (CCC) is an important physiological indicator that reflects the growth stage of trees. Accurate estimation of CCC facilitates dynamic monitoring and efficient forest management. In this study, we used high-resolution remote sensing images obtained by uncrewed aerial vehicles (UAVs) equipped with multispectral sensors (red, green, blue, near-infrared, and red-edge) to estimate CCC of lodgepole pine (Pinus elliottii). Our aim was to determine the optimal machine learning model between support vector regression (SVR) and random forest regression (RFR) for predicting CCC and to evaluate the effectiveness of multispectral bands along with 21 vegetation indices (VIs) in the estimation process. Individual tree boundaries were derived from the canopy height model (CHM) based on three-dimensional (3D) point clouds generated using structure from motion. These images, combined with continuous field measurements from January to December, provided comprehensive data for our analysis. The results showed that the SVR method outperformed the RFR method in estimating leaf chlorophyll content (LCC), with fitting R2 values up to 0.692 and RMSE values up to 0.168 mg⋅g−1. Overall, the study highlights the potential of UAV-based remote sensing for multitemporal forest monitoring, offering advances in precision forestry and tree breeding.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.