Discrimination of Frailty Phenotype by KinectTM-Based Stepping Parameters.

JAR life Pub Date : 2023-12-20 eCollection Date: 2023-01-01 DOI:10.14283/jarlife.2023.17
Y Osuka, N Takeshima, N Kojima, T Kohama, E Fujita, M Kusunoki, Y Kato, W F Brechue, H Sasai
{"title":"Discrimination of Frailty Phenotype by Kinect<sup>TM</sup>-Based Stepping Parameters.","authors":"Y Osuka, N Takeshima, N Kojima, T Kohama, E Fujita, M Kusunoki, Y Kato, W F Brechue, H Sasai","doi":"10.14283/jarlife.2023.17","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Frailty increases the risk of falling, hospitalization, and premature death, necessitating practical early-detection tools.</p><p><strong>Objectives: </strong>To examine the discriminative ability of Kinect<sup>TM</sup>-based stepping parameters for identifying frailty phenotype.</p><p><strong>Design: </strong>Population-based cross-sectional study.</p><p><strong>Setting: </strong>Eighteen neighborhoods near Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan.</p><p><strong>Participants: </strong>In total, 563 community-dwelling older adults aged ≥75 years without mobility limitations, neurological disease, or dementia were included.</p><p><strong>Measurements: </strong>Step number (SN) and knee total movement distance (KMD) during a 20-s stepping test were evaluated using the Kinect<sup>TM</sup> infrared depth sensor.</p><p><strong>Results: </strong>The number (%) of participants with frailty were 51 (9.1). The area under the receiver operating characteristic curves (95% confidence interval) of a parameter consisting of SN and KMD for frailty was 0.72 (0.64, 0.79).</p><p><strong>Conclusions: </strong>Stepping parameters evaluated using Kinect<sup>TM</sup> provided acceptable ability in identifying frailty phenotype, making it a practical screening tool in primary care and home settings.</p>","PeriodicalId":73537,"journal":{"name":"JAR life","volume":"12 ","pages":"100-104"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAR life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14283/jarlife.2023.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Frailty increases the risk of falling, hospitalization, and premature death, necessitating practical early-detection tools.

Objectives: To examine the discriminative ability of KinectTM-based stepping parameters for identifying frailty phenotype.

Design: Population-based cross-sectional study.

Setting: Eighteen neighborhoods near Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan.

Participants: In total, 563 community-dwelling older adults aged ≥75 years without mobility limitations, neurological disease, or dementia were included.

Measurements: Step number (SN) and knee total movement distance (KMD) during a 20-s stepping test were evaluated using the KinectTM infrared depth sensor.

Results: The number (%) of participants with frailty were 51 (9.1). The area under the receiver operating characteristic curves (95% confidence interval) of a parameter consisting of SN and KMD for frailty was 0.72 (0.64, 0.79).

Conclusions: Stepping parameters evaluated using KinectTM provided acceptable ability in identifying frailty phenotype, making it a practical screening tool in primary care and home settings.

通过基于 KinectTM 的步进参数识别虚弱表型。
背景:虚弱会增加跌倒、住院和过早死亡的风险,因此需要实用的早期检测工具:虚弱会增加跌倒、住院和过早死亡的风险,因此需要实用的早期检测工具:研究基于 KinectTM 的步态参数在识别虚弱表型方面的鉴别能力:设计:基于人群的横断面研究:地点:日本东京板桥区东京都老年医学研究所附近的 18 个社区:共纳入 563 名年龄≥75 岁、无行动不便、神经系统疾病或痴呆症的社区老年人:测量方法:使用 KinectTM 红外深度传感器评估 20 秒迈步测试中的步数(SN)和膝关节总移动距离(KMD):结果:患有虚弱症的参与者有 51 人(9.1%)。由 SN 和 KMD 组成的衰弱参数的接收器操作特征曲线下面积(95% 置信区间)为 0.72 (0.64, 0.79):使用 KinectTM 评估的步态参数在识别虚弱表型方面具有可接受的能力,使其成为初级保健和家庭环境中的实用筛查工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信