Saeed Mollaee, Rita Q. Fuentes-Aguilar, Joel C. Huegel, David M. Budgett, Andrew J. Taberner, Poul M. F. Nielsen
{"title":"A pneumatic reconfigurable socket for transtibial amputees","authors":"Saeed Mollaee, Rita Q. Fuentes-Aguilar, Joel C. Huegel, David M. Budgett, Andrew J. Taberner, Poul M. F. Nielsen","doi":"10.1002/cnm.3801","DOIUrl":null,"url":null,"abstract":"<p>Many transtibial amputees rate the fit between their residual limb and prosthetic socket as the most critical factor in satisfaction with using their prosthesis. This study aims to address the issue of prosthetic socket fit by reconfiguring the socket shape at the interface of the residual limb and socket. The proposed reconfigurable socket shifts pressure from sensitive areas and compensates for residual limb volume fluctuations, the most important factors in determining a good socket fit. Computed tomography scan images are employed to create the phantom limb of an amputee and to manufacture the reconfigurable socket. The performance of the reconfigurable socket was evaluated both experimentally and numerically using finite element modelling. The study showed that the reconfigurable socket can reduce interface pressure at targeted areas by up to 61%.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3801","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3801","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Many transtibial amputees rate the fit between their residual limb and prosthetic socket as the most critical factor in satisfaction with using their prosthesis. This study aims to address the issue of prosthetic socket fit by reconfiguring the socket shape at the interface of the residual limb and socket. The proposed reconfigurable socket shifts pressure from sensitive areas and compensates for residual limb volume fluctuations, the most important factors in determining a good socket fit. Computed tomography scan images are employed to create the phantom limb of an amputee and to manufacture the reconfigurable socket. The performance of the reconfigurable socket was evaluated both experimentally and numerically using finite element modelling. The study showed that the reconfigurable socket can reduce interface pressure at targeted areas by up to 61%.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.