Abubakar Tijjani Salihu, Keith D Hill, Shapour Jaberzadeh
{"title":"Age and Type of Task-Based Impact of Mental Fatigue on Balance: Systematic Review and Meta-Analysis.","authors":"Abubakar Tijjani Salihu, Keith D Hill, Shapour Jaberzadeh","doi":"10.1080/00222895.2023.2299706","DOIUrl":null,"url":null,"abstract":"<p><p>The role of cognition in balance control suggests that mental fatigue may negatively affect balance. However, cognitive involvement in balance control varies with the type or difficulty of the balance task and age. Steady-state balance tasks, such as quiet standing, are well-learned tasks executed automatically through reflex activities controlled by the brainstem and spinal cord. In contrast, novel, and challenging balance tasks, such as proactively controlling balance while walking over rugged terrain or reacting to unexpected external perturbations, may require cognitive processing. Furthermore, individuals with preexisting balance impairments due to aging or pathology may rely on cognitive processes to control balance in most circumstances. This systematic review and meta-analysis investigated the effect of mental fatigue on different types of balance control tasks in young and older adults. A literature search was conducted in seven electronic databases and 12 studies met eligibility criteria. The results indicated that mental fatigue had a negative impact on both proactive (under increased cognitive load) and reactive balance in young adults. In older adults, mental fatigue affected steady-state and proactive balance. Therefore, mentally fatigued older individuals may be at increased risk of a loss of balance during steady-state balance task compared to their younger counterparts.</p>","PeriodicalId":50125,"journal":{"name":"Journal of Motor Behavior","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Motor Behavior","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00222895.2023.2299706","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The role of cognition in balance control suggests that mental fatigue may negatively affect balance. However, cognitive involvement in balance control varies with the type or difficulty of the balance task and age. Steady-state balance tasks, such as quiet standing, are well-learned tasks executed automatically through reflex activities controlled by the brainstem and spinal cord. In contrast, novel, and challenging balance tasks, such as proactively controlling balance while walking over rugged terrain or reacting to unexpected external perturbations, may require cognitive processing. Furthermore, individuals with preexisting balance impairments due to aging or pathology may rely on cognitive processes to control balance in most circumstances. This systematic review and meta-analysis investigated the effect of mental fatigue on different types of balance control tasks in young and older adults. A literature search was conducted in seven electronic databases and 12 studies met eligibility criteria. The results indicated that mental fatigue had a negative impact on both proactive (under increased cognitive load) and reactive balance in young adults. In older adults, mental fatigue affected steady-state and proactive balance. Therefore, mentally fatigued older individuals may be at increased risk of a loss of balance during steady-state balance task compared to their younger counterparts.
期刊介绍:
The Journal of Motor Behavior, a multidisciplinary journal of movement neuroscience, publishes articles that contribute to a basic understanding of motor control. Articles from different disciplinary perspectives and levels of analysis are encouraged, including neurophysiological, biomechanical, electrophysiological, psychological, mathematical and physical, and clinical approaches. Applied studies are acceptable only to the extent that they provide a significant contribution to a basic issue in motor control. Of special interest to the journal are those articles that attempt to bridge insights from different disciplinary perspectives to infer processes underlying motor control. Those approaches may embrace postural, locomotive, and manipulative aspects of motor functions, as well as coordination of speech articulators and eye movements. Articles dealing with analytical techniques and mathematical modeling are welcome.