{"title":"Evaluating three strategies of genome-wide association analysis for integrating data from multiple populations","authors":"Zhanming Zhong, Guangzhen Li, Zhiting Xu, Haonan Zeng, Jinyan Teng, Xueyan Feng, Shuqi Diao, Yahui Gao, Jiaqi Li, Zhe Zhang","doi":"10.1111/age.13394","DOIUrl":null,"url":null,"abstract":"<p>In livestock, genome-wide association studies (GWAS) are usually conducted in a single population (single-GWAS) with limited sample size and detection power. To enhance the detection power of GWAS, meta-analysis of GWAS (meta-GWAS) and mega-analysis of GWAS (mega-GWAS) have been proposed to integrate data from multiple populations at the level of summary statistics or individual data, respectively. However, there is a lack of comparison for these different strategies, which makes it difficult to guide the best practice of GWAS integrating data from multiple study populations. To maximize the comparison of different association analysis strategies across multiple populations, we conducted single-GWAS, meta-GWAS, and mega-GWAS for the backfat thickness of 100 kg (BFT_100) and days to 100 kg (DAYS_100) within each of the three commercial pig breeds (Duroc, Yorkshire, and Landrace). Based on controlling the genome inflation factor to one, we calculated corrected <i>p</i>-values (<i>p</i><sub>C</sub>). In Yorkshire, with the largest sample size, mega-GWAS, meta-GWAS and single-GWAS detected 149, 38 and 20 significant SNPs (<i>p</i><sub>C</sub> < 1E-5) associated with BFT_100, as well as 26, four, and one QTL, respectively. Among them, <i>p</i><sub>C</sub> of SNPs from mega-GWAS was the lowest, followed by meta-GWAS and single-GWAS. The correlation of <i>p</i><sub>C</sub> among the three GWAS strategies ranged from 0.60 to 0.75 and the correlation of SNP effect values between meta-GWAS and mega-GWAS was 0.74, all showing good agreement. Collectively, even though there are differences in the integration of individual data or summary statistics, integrating data from multiple populations is an effective means of genetic argument for complex traits, especially mega-GWAS versus single-GWAS.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13394","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In livestock, genome-wide association studies (GWAS) are usually conducted in a single population (single-GWAS) with limited sample size and detection power. To enhance the detection power of GWAS, meta-analysis of GWAS (meta-GWAS) and mega-analysis of GWAS (mega-GWAS) have been proposed to integrate data from multiple populations at the level of summary statistics or individual data, respectively. However, there is a lack of comparison for these different strategies, which makes it difficult to guide the best practice of GWAS integrating data from multiple study populations. To maximize the comparison of different association analysis strategies across multiple populations, we conducted single-GWAS, meta-GWAS, and mega-GWAS for the backfat thickness of 100 kg (BFT_100) and days to 100 kg (DAYS_100) within each of the three commercial pig breeds (Duroc, Yorkshire, and Landrace). Based on controlling the genome inflation factor to one, we calculated corrected p-values (pC). In Yorkshire, with the largest sample size, mega-GWAS, meta-GWAS and single-GWAS detected 149, 38 and 20 significant SNPs (pC < 1E-5) associated with BFT_100, as well as 26, four, and one QTL, respectively. Among them, pC of SNPs from mega-GWAS was the lowest, followed by meta-GWAS and single-GWAS. The correlation of pC among the three GWAS strategies ranged from 0.60 to 0.75 and the correlation of SNP effect values between meta-GWAS and mega-GWAS was 0.74, all showing good agreement. Collectively, even though there are differences in the integration of individual data or summary statistics, integrating data from multiple populations is an effective means of genetic argument for complex traits, especially mega-GWAS versus single-GWAS.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.