{"title":"Interlayer single-atomic Fe−N4 sites on carbon-rich graphitic carbon nitride for notably enhanced photo-Fenton-like catalytic oxidation processes towards recalcitrant organic micropollutants","authors":"Lang Qin, Jiaqi Meng, Guang Yang, Yue Pan, Xinchun Gao, Yuxin Yang, Yihang Guo","doi":"10.1016/j.apcatb.2024.123695","DOIUrl":null,"url":null,"abstract":"<div><p><span>Glucose-assisted supramolecule self-assembly of melamine and cyanuric acid in the presence of Fe(NO</span><sub>3</sub>)<sub>3</sub> combined with thermal polymerization is designed to fabricate C-rich g-C<sub>3</sub>N<sub>4</sub>-embedded interlayer single-atomic Fe−N<sub>4</sub> sites catalyst (Fe<sub>1</sub>/C-CN). Fe<sub>1</sub><span>/C-CN exhibits outstanding photo-Fenton-like catalytic oxidation activity towards typical recalcitrant organic micropollutants. For example, the pseudo-first-order kinetic constant of Fe</span><sub>1</sub>/C-CN photo-Fenton-like system is 7.5 and 21.1 times higher than Fe<sub>1</sub><span>/C-CN photocatalysis and Fenton-like systems in degradation of </span><em>p</em><span>-nitrophenol, and TOC removal efficiency reaches up to 100% after reaction proceeds for 4 h. Mechanism studies reveal that synergy of maximum Fe atom utilization efficiency and boosted photoexcited charge separation dynamics accelerates regeneration of ≡Fe(II) and efficient H</span><sub>2</sub>O<sub>2</sub> activation of Fe<sub>1</sub>/C-CN, leading to plentiful active oxygen species for deep oxidation of organic micropollutants. Fe<sub>1</sub>/C-CN also shows a robust reusability in long-term remediation of organic micropollutants, attributing to interlayer Fe−N coordination interactions for preventing single Fe atoms from agglomeration and leaching to reaction media.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"345 ","pages":"Article 123695"},"PeriodicalIF":20.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000067","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glucose-assisted supramolecule self-assembly of melamine and cyanuric acid in the presence of Fe(NO3)3 combined with thermal polymerization is designed to fabricate C-rich g-C3N4-embedded interlayer single-atomic Fe−N4 sites catalyst (Fe1/C-CN). Fe1/C-CN exhibits outstanding photo-Fenton-like catalytic oxidation activity towards typical recalcitrant organic micropollutants. For example, the pseudo-first-order kinetic constant of Fe1/C-CN photo-Fenton-like system is 7.5 and 21.1 times higher than Fe1/C-CN photocatalysis and Fenton-like systems in degradation of p-nitrophenol, and TOC removal efficiency reaches up to 100% after reaction proceeds for 4 h. Mechanism studies reveal that synergy of maximum Fe atom utilization efficiency and boosted photoexcited charge separation dynamics accelerates regeneration of ≡Fe(II) and efficient H2O2 activation of Fe1/C-CN, leading to plentiful active oxygen species for deep oxidation of organic micropollutants. Fe1/C-CN also shows a robust reusability in long-term remediation of organic micropollutants, attributing to interlayer Fe−N coordination interactions for preventing single Fe atoms from agglomeration and leaching to reaction media.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.