Wells-type exact sequence and crossed extensions of algebras with bracket

IF 1 3区 数学 Q1 MATHEMATICS
José Manuel Casas, Emzar Khmaladze, Manuel Ladra
{"title":"Wells-type exact sequence and crossed extensions of algebras with bracket","authors":"José Manuel Casas, Emzar Khmaladze, Manuel Ladra","doi":"10.1515/forum-2023-0355","DOIUrl":null,"url":null,"abstract":"We study the extensibility problem of a pair of derivations associated with an abelian extension of algebras with bracket, and derive an exact sequence of the Wells type. We introduce crossed modules for algebras with bracket and prove their equivalence with internal categories in the category of algebras with bracket. We interpret the set of equivalence classes of crossed extensions as the second cohomology. Finally, we construct an eight-term exact sequence in the cohomology of algebras with bracket.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"60 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0355","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the extensibility problem of a pair of derivations associated with an abelian extension of algebras with bracket, and derive an exact sequence of the Wells type. We introduce crossed modules for algebras with bracket and prove their equivalence with internal categories in the category of algebras with bracket. We interpret the set of equivalence classes of crossed extensions as the second cohomology. Finally, we construct an eight-term exact sequence in the cohomology of algebras with bracket.
带括号的韦尔斯型精确序列和代数代数交叉扩展
我们研究了与带括号代数的无边扩展相关的一对导数的可扩展性问题,并推导出韦尔斯类型的精确序列。我们为带括号的代数引入了交叉模块,并证明了它们与带括号代数范畴中的内部范畴的等价性。我们将交叉扩展的等价类集合解释为第二同调。最后,我们在带括号的代数共生中构建了一个八项精确序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信