What conjugate phase retrieval complex vectors can do in quaternion Euclidean spaces

IF 1 3区 数学 Q1 MATHEMATICS
Yun-Zhang Li, Ming Yang
{"title":"What conjugate phase retrieval complex vectors can do in quaternion Euclidean spaces","authors":"Yun-Zhang Li, Ming Yang","doi":"10.1515/forum-2023-0389","DOIUrl":null,"url":null,"abstract":"Quaternion algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℍ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0331.png\" /> <jats:tex-math>{\\mathbb{H}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a noncommutative associative algebra. In recent years, quaternionic Fourier analysis has received increasing attention due to its applications in signal analysis and image processing. This paper addresses conjugate phase retrieval problem in the quaternion Euclidean space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℍ</m:mi> <m:mi>M</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0330.png\" /> <jats:tex-math>{\\mathbb{H}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>M</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0275.png\" /> <jats:tex-math>{M\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Write <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>ℂ</m:mi> <m:mi>η</m:mi> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mi>ξ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mi>ξ</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>ξ</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>β</m:mi> <m:mo>⁢</m:mo> <m:mi>η</m:mi> </m:mrow> </m:mrow> <m:mo rspace=\"4.2pt\">,</m:mo> <m:msub> <m:mi>ξ</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:mrow> <m:mo rspace=\"4.2pt\">,</m:mo> <m:mrow> <m:mi>β</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0316.png\" /> <jats:tex-math>{\\mathbb{C}_{\\eta}=\\{\\xi:\\xi=\\xi_{0}+\\beta\\eta,\\,\\xi_{0},\\,\\beta\\in\\mathbb{R}\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>η</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mi>i</m:mi> <m:mo rspace=\"4.2pt\">,</m:mo> <m:mi>j</m:mi> <m:mo rspace=\"4.2pt\">,</m:mo> <m:mi>k</m:mi> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0298.png\" /> <jats:tex-math>{\\eta\\in\\{i,\\,j,\\,k\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We remark that not only <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>ℂ</m:mi> <m:mi>η</m:mi> <m:mi>M</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0317.png\" /> <jats:tex-math>{\\mathbb{C}_{\\eta}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-vectors cannot allow traditional conjugate phase retrieval in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℍ</m:mi> <m:mi>M</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0330.png\" /> <jats:tex-math>{\\mathbb{H}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, but also <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>ℂ</m:mi> <m:mi>i</m:mi> <m:mi>M</m:mi> </m:msubsup> <m:mo>∪</m:mo> <m:msubsup> <m:mi>ℂ</m:mi> <m:mi>j</m:mi> <m:mi>M</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0322.png\" /> <jats:tex-math>{\\mathbb{C}_{i}^{M}\\cup\\mathbb{C}_{j}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-complex vectors cannot allow phase retrieval in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℍ</m:mi> <m:mi>M</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0330.png\" /> <jats:tex-math>{\\mathbb{H}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We are devoted to conjugate phase retrieval of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>ℂ</m:mi> <m:mi>i</m:mi> <m:mi>M</m:mi> </m:msubsup> <m:mo>∪</m:mo> <m:msubsup> <m:mi>ℂ</m:mi> <m:mi>j</m:mi> <m:mi>M</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0322.png\" /> <jats:tex-math>{\\mathbb{C}_{i}^{M}\\cup\\mathbb{C}_{j}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-complex vectors in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℍ</m:mi> <m:mi>M</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0330.png\" /> <jats:tex-math>{\\mathbb{H}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where “conjugate” is not the traditional conjugate. We introduce the notions of conjugation, maximal commutative subset and conjugate phase retrieval. Using the phase lifting techniques, we present some sufficient conditions on complex vectors allowing conjugate phase retrieval. And some examples are also provided to illustrate the generality of our theory.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0389","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quaternion algebra {\mathbb{H}} is a noncommutative associative algebra. In recent years, quaternionic Fourier analysis has received increasing attention due to its applications in signal analysis and image processing. This paper addresses conjugate phase retrieval problem in the quaternion Euclidean space M {\mathbb{H}^{M}} with M 2 {M\geq 2} . Write η = { ξ : ξ = ξ 0 + β η , ξ 0 , β } {\mathbb{C}_{\eta}=\{\xi:\xi=\xi_{0}+\beta\eta,\,\xi_{0},\,\beta\in\mathbb{R}\}} for η { i , j , k } {\eta\in\{i,\,j,\,k\}} . We remark that not only η M {\mathbb{C}_{\eta}^{M}} -vectors cannot allow traditional conjugate phase retrieval in M {\mathbb{H}^{M}} , but also i M j M {\mathbb{C}_{i}^{M}\cup\mathbb{C}_{j}^{M}} -complex vectors cannot allow phase retrieval in M {\mathbb{H}^{M}} . We are devoted to conjugate phase retrieval of i M j M {\mathbb{C}_{i}^{M}\cup\mathbb{C}_{j}^{M}} -complex vectors in M {\mathbb{H}^{M}} , where “conjugate” is not the traditional conjugate. We introduce the notions of conjugation, maximal commutative subset and conjugate phase retrieval. Using the phase lifting techniques, we present some sufficient conditions on complex vectors allowing conjugate phase retrieval. And some examples are also provided to illustrate the generality of our theory.
共轭相位检索复矢量在四元欧几里得空间中的作用
四元代数ℍ {\mathbb{H}} 是一种非交换关联代数。近年来,四元数傅里叶分析法因其在信号分析和图像处理中的应用而受到越来越多的关注。本文讨论的是四元欧几里得空间ℍ M {\mathbb{H}^{M}} 中的共轭相位检索问题,其中 M ≥ 2 {M\geq 2} 。写 ℂ η = { ξ : ξ = ξ 0 + β η , ξ 0 , β ∈ ℝ }. {\mathbb{C}_{\eta}=\{xi:\xi=\xi_{0}+\beta\eta,\,\xi_{0},\,\beta\in\mathbb{R}\}} for η ∈ { i , j , k } {\eta\in\{i,\,j,\,k\}} .我们注意到不仅 η M {\mathbb{C}_{\eta}^{M}}. -向量无法在ℍ M {\mathbb{H}^{M}} 中进行传统的共轭相位检索,而且ℍ M {\mathbb{H}^{M}} 也无法进行传统的共轭相位检索。 而且 ℂ i M ∪ ℂ j M {\mathbb{C}_{i}^{M}\cup\mathbb{C}_{j}^{M}} -复数向量也不能在 ℂ M {mathbb{H}^{M}} 中进行传统的共轭相位检索。 -复数向量无法在ℍ M {\mathbb{H}^{M}} 中进行相位检索。 .我们致力于 ℂ i M ∪ ℂ j M {\mathbb{C}_{i}^{M}\cup\mathbb{C}_{j}^{M}} 的共轭相位检索。 -ℍ M {\mathbb{H}^{M}} 中的复数向量。 这里的 "共轭 "并非传统意义上的共轭。我们介绍了共轭、最大交换子集和共轭相位检索等概念。利用相位提升技术,我们提出了一些允许共轭相位检索的复杂向量的充分条件。我们还提供了一些例子来说明我们理论的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信