A Note on Singularity Categories and Triangular Matrix Algebras

IF 0.5 4区 数学 Q3 MATHEMATICS
Yongyun Qin
{"title":"A Note on Singularity Categories and Triangular Matrix Algebras","authors":"Yongyun Qin","doi":"10.1007/s10468-023-10249-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Lambda = \\left[ \\begin{array}{cc} A &amp;{} 0 \\\\ M &amp;{} B \\end{array}\\right] \\)</span> be an Artin algebra and <span>\\(_BM_A\\)</span> a <i>B</i>-<i>A</i>-bimodule. We prove that there is a triangle equivalence <span>\\(D_{sg}(\\Lambda ) \\cong D_{sg}(A)\\coprod D_{sg}(B)\\)</span> between the corresponding singularity categories if <span>\\(_BM\\)</span> is semi-simple and <span>\\(M_A\\)</span> is projective. As a result, we obtain a new method for describing the singularity categories of certain bounded quiver algebras.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1111 - 1119"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10249-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Lambda = \left[ \begin{array}{cc} A &{} 0 \\ M &{} B \end{array}\right] \) be an Artin algebra and \(_BM_A\) a B-A-bimodule. We prove that there is a triangle equivalence \(D_{sg}(\Lambda ) \cong D_{sg}(A)\coprod D_{sg}(B)\) between the corresponding singularity categories if \(_BM\) is semi-simple and \(M_A\) is projective. As a result, we obtain a new method for describing the singularity categories of certain bounded quiver algebras.

奇异性类别和三角矩阵代数的说明
让 \(\Lambda = \left[ \begin{array}{cc} A &{} 0 \\M &{} B \end{array}\right] \)是一个阿汀代数,而 \(_BM_A\) 是一个 B-A 二模子。我们证明,如果 \(_BM\) 是半简单的,并且 \(M_A\) 是投影的,那么相应的奇异范畴之间存在三角等价关系 \(D_{sg}(\Lambda ) \cong D_{sg}(A)\coprod D_{sg}(B)\)。因此,我们得到了描述某些有界四元组的奇点范畴的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信