Kristoffer Eikehaug, Malin Haugen, Olav Folkvord, Benyamine Benali, Emil Bang Larsen, Alina Tinkova, Atle Rotevatn, Jan Martin Nordbotten, Martin A. Fernø
{"title":"Engineering Meter-scale Porous Media Flow Experiments for Quantitative Studies of Geological Carbon Sequestration","authors":"Kristoffer Eikehaug, Malin Haugen, Olav Folkvord, Benyamine Benali, Emil Bang Larsen, Alina Tinkova, Atle Rotevatn, Jan Martin Nordbotten, Martin A. Fernø","doi":"10.1007/s11242-023-02025-0","DOIUrl":null,"url":null,"abstract":"<div><p>This technical note describes the FluidFlower concept, a new laboratory infrastructure for geological carbon storage research. The highly controlled and adjustable system produces a strikingly visual physical ground truth of studied processes for model validation, comparison and forecasting, including detailed physical studies of the behavior and storage mechanisms of carbon dioxide and its derivative forms in relevant geological settings for subsurface carbon storage. The design, instrumentation, structural aspects and methodology are described. Furthermore, we share engineering insights into construction, operation, fluid considerations and fluid resetting in the porous media. The new infrastructure enables researchers to study variability between repeated CO<sub>2</sub> injections, making the FluidFlower concept a suitable tool for sensitivity studies on a range of determining carbon storage parameters in varying geological formations.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-023-02025-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-023-02025-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This technical note describes the FluidFlower concept, a new laboratory infrastructure for geological carbon storage research. The highly controlled and adjustable system produces a strikingly visual physical ground truth of studied processes for model validation, comparison and forecasting, including detailed physical studies of the behavior and storage mechanisms of carbon dioxide and its derivative forms in relevant geological settings for subsurface carbon storage. The design, instrumentation, structural aspects and methodology are described. Furthermore, we share engineering insights into construction, operation, fluid considerations and fluid resetting in the porous media. The new infrastructure enables researchers to study variability between repeated CO2 injections, making the FluidFlower concept a suitable tool for sensitivity studies on a range of determining carbon storage parameters in varying geological formations.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).