Zhiqiang Du , Yunliang Li , Yanfang Fu , Xianghan Zheng
{"title":"Blockchain-based access control architecture for multi-domain environments","authors":"Zhiqiang Du , Yunliang Li , Yanfang Fu , Xianghan Zheng","doi":"10.1016/j.pmcj.2024.101878","DOIUrl":null,"url":null,"abstract":"<div><p><span>Numerous users from diverse domains access information and perform various operations in multi-domain environments. These users have complex permissions that increase the risk of identity falsification, unauthorized access, and privacy breaches during cross-domain interactions. Consequently, implementing an access control architecture to prevent users from engaging in illicit activities is imperative. This paper proposes a novel blockchain-based access control architecture for multi-domain environments. By integrating the multi-domain environment within a federated chain, the architecture utilizes Decentralized Identifiers (DIDs) for user identification and relies on public/secret key pairs for operational execution. Verifiable credentials are used to authorize permissions and release resources, thereby ensuring </span>authentication<span> and preventing tampering and forgery. In addition, the architecture automates the authorization and access control processes through smart contracts<span>, thereby eliminating human intervention. Finally, we performed a simulation evaluation of the architecture. The most time-consuming process had a runtime of 1074 ms, primarily attributed to interactions with the blockchain. Concurrent testing revealed that with a concurrency level of 2000 demonstrated that the response times for read and write operations were maintained within 1000 ms and 4600 ms, respectively. In terms of storage efficiency, except for user registration, which incurred two gas charges, all the other processes required only one charge.</span></span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157411922400004X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous users from diverse domains access information and perform various operations in multi-domain environments. These users have complex permissions that increase the risk of identity falsification, unauthorized access, and privacy breaches during cross-domain interactions. Consequently, implementing an access control architecture to prevent users from engaging in illicit activities is imperative. This paper proposes a novel blockchain-based access control architecture for multi-domain environments. By integrating the multi-domain environment within a federated chain, the architecture utilizes Decentralized Identifiers (DIDs) for user identification and relies on public/secret key pairs for operational execution. Verifiable credentials are used to authorize permissions and release resources, thereby ensuring authentication and preventing tampering and forgery. In addition, the architecture automates the authorization and access control processes through smart contracts, thereby eliminating human intervention. Finally, we performed a simulation evaluation of the architecture. The most time-consuming process had a runtime of 1074 ms, primarily attributed to interactions with the blockchain. Concurrent testing revealed that with a concurrency level of 2000 demonstrated that the response times for read and write operations were maintained within 1000 ms and 4600 ms, respectively. In terms of storage efficiency, except for user registration, which incurred two gas charges, all the other processes required only one charge.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.