A Transfer Learning and Explainable Solution to Detect mpox from Smartphones images

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mattia Giovanni Campana , Marco Colussi , Franca Delmastro , Sergio Mascetti , Elena Pagani
{"title":"A Transfer Learning and Explainable Solution to Detect mpox from Smartphones images","authors":"Mattia Giovanni Campana ,&nbsp;Marco Colussi ,&nbsp;Franca Delmastro ,&nbsp;Sergio Mascetti ,&nbsp;Elena Pagani","doi":"10.1016/j.pmcj.2023.101874","DOIUrl":null,"url":null,"abstract":"<div><p>Monkeypox (mpox) virus has become a “public health emergency of international concern” in the last few months, as declared by the World Health Organization, especially for low-income countries. A symptom of mpox infection is the appearance of rashes and skin eruptions, which can lead people to seek medical advice. A technology that might help perform a preliminary screening based on the aspect of skin lesions is the use of Machine Learning<span><span> for image classification. However, to make this technology suitable on a large scale, it should be usable directly on people </span>mobile devices, with a possible notification to a remote medical expert.</span></p><p><span>In this work, we investigate the adoption of Deep Learning<span> to detect mpox from skin lesion images derived from smartphone cameras. The proposal leverages Transfer Learning to cope with the scarce availability of mpox image datasets. As a first step, a homogeneous, unpolluted, dataset was produced by manual selection and preprocessing of available image data, publicly released for research purposes. Subsequently, we compared multiple </span></span>Convolutional Neural Networks<span> (CNNs) using a rigorous 10-fold stratified cross-validation approach and we conducted an analysis to evaluate the models’ fairness towards different skin tones. The best models have been then optimized through quantization for use on mobile devices; measures of classification quality, memory footprint<span>, and processing times validated the feasibility of our proposal. The most favorable outcomes have been achieved by MobileNetV3Large, attaining an F-1 score of 0.928 in the binary task and 0.879 in the multi-class task. Furthermore, the application of quantization led to a reduction in the model size to less than one-third, while simultaneously decreasing the inference time from 0.016 to 0.014 s, with only a marginal loss of 0.004 in F-1 score. Additionally, the use of eXplainable AI has been investigated as a suitable instrument to both technically and clinically validate classification outcomes.</span></span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223001323","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Monkeypox (mpox) virus has become a “public health emergency of international concern” in the last few months, as declared by the World Health Organization, especially for low-income countries. A symptom of mpox infection is the appearance of rashes and skin eruptions, which can lead people to seek medical advice. A technology that might help perform a preliminary screening based on the aspect of skin lesions is the use of Machine Learning for image classification. However, to make this technology suitable on a large scale, it should be usable directly on people mobile devices, with a possible notification to a remote medical expert.

In this work, we investigate the adoption of Deep Learning to detect mpox from skin lesion images derived from smartphone cameras. The proposal leverages Transfer Learning to cope with the scarce availability of mpox image datasets. As a first step, a homogeneous, unpolluted, dataset was produced by manual selection and preprocessing of available image data, publicly released for research purposes. Subsequently, we compared multiple Convolutional Neural Networks (CNNs) using a rigorous 10-fold stratified cross-validation approach and we conducted an analysis to evaluate the models’ fairness towards different skin tones. The best models have been then optimized through quantization for use on mobile devices; measures of classification quality, memory footprint, and processing times validated the feasibility of our proposal. The most favorable outcomes have been achieved by MobileNetV3Large, attaining an F-1 score of 0.928 in the binary task and 0.879 in the multi-class task. Furthermore, the application of quantization led to a reduction in the model size to less than one-third, while simultaneously decreasing the inference time from 0.016 to 0.014 s, with only a marginal loss of 0.004 in F-1 score. Additionally, the use of eXplainable AI has been investigated as a suitable instrument to both technically and clinically validate classification outcomes.

从智能手机图像中检测 mpox 的迁移学习和可解释解决方案
近几个月来,猴痘病毒已成为世界卫生组织宣布的 "国际关注的突发公共卫生事件",尤其是在低收入国家。感染猴痘的症状之一是出现皮疹和皮肤糜烂,这可能导致人们寻求医疗建议。机器学习图像分类技术可能有助于根据皮损方面进行初步筛查。在这项工作中,我们研究了采用深度学习从智能手机摄像头获取的皮损图像中检测痘痘的方法。该提案利用迁移学习技术来应对痘痘图像数据集稀缺的问题。第一步,我们通过手动选择和预处理公开发布的用于研究目的的可用图像数据,制作了一个同质、未受污染的数据集。随后,我们使用严格的 10 倍分层交叉验证方法比较了多个卷积神经网络(CNN),并进行了分析,以评估模型对不同肤色的公平性。然后,我们对最佳模型进行了量化优化,以便在移动设备上使用;对分类质量、内存占用和处理时间的测量验证了我们建议的可行性。MobileNetV3Large 取得了最理想的结果,在二元任务中的 F-1 得分为 0.928,在多类任务中的 F-1 得分为 0.879。此外,量化技术的应用还将模型规模缩小到了三分之一以下,同时将推理时间从 0.016 秒缩短到了 0.014 秒,F-1 分数仅损失了 0.004 分。此外,还研究了使用可解释人工智能(eXplainable AI)作为技术和临床验证分类结果的合适工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pervasive and Mobile Computing
Pervasive and Mobile Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
7.70
自引率
2.30%
发文量
80
审稿时长
68 days
期刊介绍: As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies. The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信