Parametric Poisson Bifurcated Autoregressive Process: Application to Worldwide, Regional, and Peculiar Countries’ of Automobile Production

R. O. Olanrewaju, S. Olanrewaju, Toyin Omoyeni Oguntola, Wasiu Adepoju
{"title":"Parametric Poisson Bifurcated Autoregressive Process: Application to Worldwide, Regional, and Peculiar Countries’ of Automobile Production","authors":"R. O. Olanrewaju, S. Olanrewaju, Toyin Omoyeni Oguntola, Wasiu Adepoju","doi":"10.48185/jmam.v4i1.764","DOIUrl":null,"url":null,"abstract":"This article introduces Bifurcated Autoregressive (BAR) process with two apart marginal distribution error terms of  w2 and w2+1 of Poisson white noises to make it Poisson Bifurcated Autoregressive (PBAR) in a parametric setting. The statistical definition of PBAR (1) process with parameters B1 and B2 that must be |B1 | and |B2 |<1 for stationary process was spelt-out. Weighted Least Squares (WLS) parameter estimation technique was adopted and the process limiting distribution was carried-out via the combination methods of martingale process and Lindeberg’s condition. Monthly automobile production in Japan, Outside Japan, America, USA, Europe, Asia, and China that approximately tantamount to worldwide, regional, and peculiar countries’ of automobile production was subjected to the PBAR process. In conclusion, Japan automobile production possessed the highest and largest error correlation (w2 , w2+1 ) of 0.6582 (65%) with first order PBAR, with B1Y(t/2) , such that B1=0.2228 of degenerated two major divisions of automobile production of Registrations and Mini-Vehicles with descendant of different brands (models).","PeriodicalId":393347,"journal":{"name":"Journal of Mathematical Analysis and Modeling","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48185/jmam.v4i1.764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces Bifurcated Autoregressive (BAR) process with two apart marginal distribution error terms of  w2 and w2+1 of Poisson white noises to make it Poisson Bifurcated Autoregressive (PBAR) in a parametric setting. The statistical definition of PBAR (1) process with parameters B1 and B2 that must be |B1 | and |B2 |<1 for stationary process was spelt-out. Weighted Least Squares (WLS) parameter estimation technique was adopted and the process limiting distribution was carried-out via the combination methods of martingale process and Lindeberg’s condition. Monthly automobile production in Japan, Outside Japan, America, USA, Europe, Asia, and China that approximately tantamount to worldwide, regional, and peculiar countries’ of automobile production was subjected to the PBAR process. In conclusion, Japan automobile production possessed the highest and largest error correlation (w2 , w2+1 ) of 0.6582 (65%) with first order PBAR, with B1Y(t/2) , such that B1=0.2228 of degenerated two major divisions of automobile production of Registrations and Mini-Vehicles with descendant of different brands (models).
参数泊松分岔自回归过程:应用于全球、地区和特殊国家的汽车生产
本文介绍了分岔自回归(BAR)过程,其两个边际分布误差项分别为 w2 和 w2+1 的泊松白噪声,使其成为参数设置下的泊松分岔自回归(PBAR)过程。PBAR (1) 过程的参数 B1 和 B2 必须为 |B1 | 和 |B2 |<1,才能达到静止过程。采用加权最小二乘法(WLS)参数估计技术,并通过马氏过程和林德伯格条件的组合方法得出过程极限分布。日本、日本以外地区、美国、欧洲、亚洲和中国的汽车月产量约等于全球、区域和特殊国家的汽车产量,对其进行了 PBAR 处理。总之,日本汽车产量与一阶 PBAR 的误差相关性(w2 , w2+1 )最高且最大,为 0.6582(65%),B1Y(t/2) = 0.2228。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信