Multidisciplinary classification for Indonesian scientific articles abstract using pre-trained BERT model

Antonius Angga Kurniawan, S. Madenda, Setia Wirawan, Ruddy J. Suhatril
{"title":"Multidisciplinary classification for Indonesian scientific articles abstract using pre-trained BERT model","authors":"Antonius Angga Kurniawan, S. Madenda, Setia Wirawan, Ruddy J. Suhatril","doi":"10.26555/ijain.v9i2.1051","DOIUrl":null,"url":null,"abstract":"Scientific articles now have multidisciplinary content. These make it difficult for researchers to find out relevant information. Some submissions are irrelevant to the journal's discipline. Categorizing articles and assessing their relevance can aid researchers and journals. Existing research still focuses on single-category predictive outcomes. Therefore, this research takes a new approach by applying a multidisciplinary classification for Indonesian scientific article abstracts using a pre-trained BERT model, showing the relevance between each category in an abstract. The dataset used was 9,000 abstracts with 9 disciplinary categories. On the dataset, text preprocessing is performed. The classification model was built by combining the pre-trained BERT model with Artificial Neural Network. Fine-tuning the hyperparameters is done to determine the most optimal hyperparameter combination for the model. The hyperparameters consist of batch size, learning rate, number of epochs, and data ratio. The best hyperparameter combination is a learning rate of 1e-5, batch size 32, epochs 3, and data ratio 9:1, with a validation accuracy value of 90.8%. The confusion matrix results of the model are compared with the confusion matrix results by experts. In this case, the highest accuracy result obtained by the model is 99.56%. A software prototype used the most accurate model to classify new data, displaying the top two prediction probabilities and the dominant category. This research produces a model that can be used to solve Indonesian text classification-related problems.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26555/ijain.v9i2.1051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scientific articles now have multidisciplinary content. These make it difficult for researchers to find out relevant information. Some submissions are irrelevant to the journal's discipline. Categorizing articles and assessing their relevance can aid researchers and journals. Existing research still focuses on single-category predictive outcomes. Therefore, this research takes a new approach by applying a multidisciplinary classification for Indonesian scientific article abstracts using a pre-trained BERT model, showing the relevance between each category in an abstract. The dataset used was 9,000 abstracts with 9 disciplinary categories. On the dataset, text preprocessing is performed. The classification model was built by combining the pre-trained BERT model with Artificial Neural Network. Fine-tuning the hyperparameters is done to determine the most optimal hyperparameter combination for the model. The hyperparameters consist of batch size, learning rate, number of epochs, and data ratio. The best hyperparameter combination is a learning rate of 1e-5, batch size 32, epochs 3, and data ratio 9:1, with a validation accuracy value of 90.8%. The confusion matrix results of the model are compared with the confusion matrix results by experts. In this case, the highest accuracy result obtained by the model is 99.56%. A software prototype used the most accurate model to classify new data, displaying the top two prediction probabilities and the dominant category. This research produces a model that can be used to solve Indonesian text classification-related problems.
使用预训练的 BERT 模型对印尼科学文章摘要进行多学科分类
科学文章现在具有多学科内容。这使得研究人员很难找到相关信息。有些投稿与期刊学科无关。对文章进行分类并评估其相关性可以帮助研究人员和期刊。现有研究仍侧重于单一类别的预测结果。因此,本研究采用了一种新方法,利用预先训练的 BERT 模型对印尼科学文章摘要进行多学科分类,显示摘要中每个类别之间的相关性。所使用的数据集包含 9000 篇摘要和 9 个学科分类。对数据集进行了文本预处理。通过将预先训练好的 BERT 模型与人工神经网络相结合,建立了分类模型。对超参数进行微调,以确定模型的最优超参数组合。超参数包括批量大小、学习率、历时次数和数据比率。最佳超参数组合为学习率 1e-5、批量大小 32、epochs 3 和数据比 9:1,验证准确率值为 90.8%。该模型的混淆矩阵结果与专家的混淆矩阵结果进行了比较。在这种情况下,模型获得的最高准确率为 99.56%。软件原型使用最准确的模型对新数据进行分类,显示前两个预测概率和主要类别。这项研究建立的模型可用于解决印尼文本分类相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Advances in Intelligent Informatics
International Journal of Advances in Intelligent Informatics Computer Science-Computer Vision and Pattern Recognition
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信